
Yue Tan
University of Electronic Science and Technology of China

tanxiangyueer@gmail.com

Sampling for
Big Data

Sampling for Big Data

Big Data

◊ “Big” data arises in many forms:
– Physical Measurements: from science (physics, astronomy)
– Medical data: genetic sequences, detailed time series
– Activity data: GPS location, social network activity
– Business data: customer behavior tracking at fine detail

◊ Common themes:
– Data is large, and growing
– There are important patterns

and trends in the data
– We don’t fully know where to look

or how to find them

Sampling for Big Data

Why Reduce?

◊ Although “big” data is about more than just the volume…
…most big data is big!

◊ It is not always possible to store the data in full
– Many applications (telecoms, ISPs, search engines) can’t keep everything

◊ It is inconvenient to work with data in full
– Just because we can, doesn’t mean we should

◊ It is faster to work with a compact summary
– Better to explore data on a laptop than a cluster

Sampling for Big Data

Why Sample?

◊ Sampling has an intuitive semantics
– We obtain a smaller data set with the same structure

◊ Estimating on a sample is often straightforward
– Run the analysis on the sample that you would on the full data
– Some rescaling/reweighting may be necessary

◊ Sampling is general and agnostic to the analysis to be done
– Other summary methods only work for certain computations
– Though sampling can be tuned to optimize some criteria

◊ Sampling is (usually) easy to understand
– So prevalent that we have an intuition about sampling

Sampling for Big Data

Alternatives to Sampling

◊ Sampling is not the only game in town
– Many other data reduction techniques by many names

◊ Dimensionality reduction methods
– PCA, SVD, eigenvalue/eigenvector decompositions
– Costly and slow to perform on big data

◊ “Sketching” techniques for streams of data
– Hash based summaries via random projections
– Complex to understand and limited in function

◊ Other transform/dictionary based summarization methods
– Wavelets, Fourier Transform, DCT, Histograms
– Not incrementally updatable, high overhead

Sampling for Big Data

Health Warning: contains probabilities

◊ Some probability basics are assumed
– Concepts of probability, expectation, variance of random variables
– Allude to concentration of measure (Exponential/Chernoff bounds)

Sampling for Big Data

Outline

◊ Motivating application: sampling in large ISP networks
◊ Basics of sampling: concepts and estimation
◊ Stream sampling: uniform and weighted case

– Variations: Concise sampling, sample and hold, sketch guided
◊ Advanced stream sampling: sampling as cost optimization

– VarOpt, priority, structure aware, and stable sampling
◊ *Graph sampling

– Node, edge and subgraph sampling
◊ Conclusion and future directions

Sampling for Big Data

Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Query Requirements
(Ad Hoc, Accuracy,
Aggregates, Speed)

Resource Constraints
(Bandwidth, Storage, CPU)

Sampling for Big Data

Motivating Application: ISP Data

◊ Will motivate many results with application to ISPs
◊ Many reasons to use such examples:

– Expertise: tutors from telecoms world
– Demand: many sampling methods developed in response to ISP needs
– Practice: sampling widely used in ISP monitoring, built into routers
– Prescience: ISPs were first to hit many “big data” problems
– Variety: many different places where sampling is needed

◊ First, a crash-course on ISP networks…

Sampling for Big Data

Structure of Large ISP Networks

Peering with other ISPs

Access Networks:
Wireless, DSL, IPTV

City-level
Router Centers

Backbone Links

Downstream ISP and
business customers

Service and
Datacenters

Network Management
& Administration

Sampling for Big Data

Measuring the ISP Network: Data
Sources

Peering

Access
Router Centers

Backbone

Business

DatacentersManagement

Link Traffic Rates
Aggregated per router interface

Traffic Matrices
Flow records from routers

Loss & Latency
Active probing

Loss & Latency
Roundtrip to edge

Protocol Monitoring:
Routers, Wireless

Status Reports:
Device failures and transitions

Customer Care Logs
Reactive indicators of
network performance

Sampling for Big Data

Why Summarize (ISP) Big Data?

◊ When transmission bandwidth for measurements is limited
– Not such a big issue in ISPs with in-band collection

◊ Typically raw accumulation is not feasible (even for nation states)
– High rate streaming data
– Maintain historical summaries for baselining, time series analysis

◊ To facilitate fast queries
– When infeasible to run exploratory queries over full data

◊ As part of hierarchical query infrastructure:
– Maintain full data over limited duration window
– Drill down into full data through one or more layers of summarization

Sampling has been proved to be a flexible method to accomplish this

Sampling for Big Data

Data Scale:
Summarization and Sampling

Sampling for Big Data

Traffic Measurement in the ISP
Network

Access
Router Centers

Backbone

Business

DatacentersManagement

Traffic Matrices
Flow records from routers

Sampling for Big Data

Massive Dataset: Flow Records

◊ IP Flow: set of packets with common key observed close in time

◊ Flow Key: IP src/dst address, TCP/UDP ports, ToS,… [64 to 104+ bits]

◊ Flow Records:
– Protocol level summaries of flows, compiled and exported by routers
– Flow key, packet and byte counts, first/last packet time, some router state
– Realizations: Cisco Netflow, IETF Standards

◊ Scale: 100’s TeraBytes of flow records daily are generated in a large ISP
◊ Used to manage network over range of timescales:

– Capacity planning (months),…., detecting network attacks (seconds)

◊ Analysis tasks
– Easy: timeseries of predetermined aggregates (e.g. address prefixes)
– Hard: fast queries over exploratory selectors, history, communications subgraphs

flow 1 flow 2 flow 3 flow 4

time

Sampling for Big Data

Flows, Flow Records and Sampling

◊ Two types of sampling used in practice for internet traffic:
1. Sampling packet stream in router prior to forming flow records

□ Limits the rate of lookups of packet key in flow cache
□ Realized as Packet Sampled NetFlow (more later…)

1. Downstream sampling of flow records in collection infrastructure
□ Limits transmission bandwidth, storage requirements
□ Realized in ISP measurement collection infrastructure (more later…)

◊ Two cases illustrative of general property
– Different underlying distributions require different sample designs
– Statistical optimality sometimes limited by implementation constraints

□ Availability of router storage, processing cycles

Sampling for Big Data

Abstraction: Keyed Data Streams

◊ Data Model: objects are keyed weights
– Objects (x,k): Weight x; key k

□ Example 1: objects = packets, x = bytes, k = key (source/destination)
□ Example 2: objects = flows, x = packets or bytes, k = key
□ Example 3: objects = account updates, x = credit/debit, k = account ID

◊ Stream of keyed weights, {(xi , ki): i = 1,2,…,n}
◊ Generic query: subset sums

– X(S) = ΣiS xi
 for S  {1,2,…,n} i.e. total weight of index subset S

– Typically S = S(K) = {i: ki  K} : objects with keys in K
□ Example 1, 2: X(S(K)) = total bytes to given IP dest address / UDP port
□ Example 3: X(S(K)) = total balance change over set of accounts

◊ Aim: Compute fixed size summary of stream that can be used to
estimate arbitrary subset sums with known error bounds

Sampling for Big Data

Inclusion Sampling and Estimation

◊ Horvitz-Thompson Estimation:
– Object of size xi sampled with probability pi

– Unbiased estimate x’i = xi / pi (if sampled), 0 if not sampled: E[x’i] = xi

◊ Linearity:
– Estimate of subset sum = sum of matching estimates
– Subset sum X(S)= iS xi

 is estimated by X’(S) = iS x’i

◊ Accuracy:
– Exponential Bounds: Pr[|X’(S) - X(S)| > δX(S)] ≤ exp[-g(δ)X(S)]
– Confidence intervals: X(S)  [X-() , X+()] with probability 1 - 

◊ Futureproof:
– Don’t need to know queries at time of sampling

□ “Where/where did that suspicious UDP port first become so active?”
□ “Which is the most active IP address within than anomalous subnet?”

– Retrospective estimate: subset sum over relevant keyset

Sampling for Big Data

Independent Stream Sampling

◊ Bernoulli Sampling
– IID sampling of objects with some probability p
– Sampled weight x has HT estimate x/p

◊ Poisson Sampling
– Weight xi sampled with probability pi ; HT estimate xi / pi

◊ When to use Poisson vs. Bernoulli sampling?
– Elephants and mice: Poisson allows probability to depend on weight…

◊ What is best choice of probabilities for given stream {xi} ?

Sampling for Big Data

Bernoulli Sampling

◊ The easiest possible case of sampling: all weights are 1
– N objects, and want to sample k from them uniformly
– Each possible subset of k should be equally likely

◊ Uniformly sample an index from N (without replacement) k times
– Some subtleties: truly random numbers from [1…N] on a computer?
– Assume that random number generators are good enough

◊ Common trick in DB: assign a random number to each item and sort
– Costly if N is very big, but so is random access

◊ Interesting problem: take a single linear scan of data to draw sample
– Streaming model of computation: see each element once
– Application: IP flow sampling, too many (for us) to store

Sampling for Big Data

Reservoir Sampling

“Reservoir sampling” described by [Knuth 69, 81]; enhancements [Vitter 85]
◊ Fixed size k uniform sample from arbitrary size N stream in one pass

– No need to know stream size in advance
– Include first k items w.p. 1
– Include item n > k with probability p(n) = k/n, n > k

□ Pick j uniformly from {1,2,…,n}
□ If j ≤ k, swap item n into location j in reservoir, discard replaced item

◊ Neat proof shows the uniformity of the sampling method:
– Let Sn = sample set after n arrivals

k=7 n

m (< n)

Previously sampled item: induction
m  Sn-1 w.p. pn-1  m  Sn w.p. pn-1 * (1 – pn / k) = pn

New item: selection probability
Prob[n  Sn] = pn := k/n

Sampling for Big Data

Reservoir Sampling: Skip Counting

◊ Simple approach: check each item in turn
– O(1) per item:
– Fine if computation time < interarrival time
– Otherwise build up computation backlog O(N)

◊ Better: “skip counting”
– Find random index m(n) of next selection > n
– Distribution: Prob[m(n) ≤ m] = 1 - (1-pn+1)*(1-pn+2)*…*(1-pm)

◊ Expected number of selections from stream is
 k + Σk<m≤N pm = k + Σk<m≤N k/m = O(k (1 + ln (N/k)))

◊ Vitter’85 provided algorithm with this average running time

Sampling for Big Data

Reservoir Sampling via Order Sampling

◊ Order sampling a.k.a. bottom-k sample, min-hashing
◊ Uniform sampling of stream into reservoir of size k
◊ Each arrival n: generate one-time random value rn  U[0,1]

– rn also known as hash, rank, tag…
◊ Store k items with the smallest random tags

0.391 0.908 0.291 0.555 0.619 0.273

 Each item has same chance of least tag, so uniform
 Fast to implement via priority queue
 Can run on multiple input streams separately, then merge

Sampling for Big Data

Handling Weights

◊ So far: uniform sampling from a stream using a reservoir
◊ Extend to non-uniform sampling from weighted streams

– Easy case: k=1
– Sampling probability p(n) = xn/Wn where Wn = i=1

n xi

◊ k>1 is harder
– Can have elements with large weight: would be sampled with prob 1?

◊ Number of different weighted order-sampling schemes proposed to
realize desired distributional objectives
– Rank rn = f(un, xn) for some function f and un  U[0,1]

– k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
– [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006]
– Order PPS Sampling [Ohlsson 1990, Rosen 1997]
– Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]

Sampling for Big Data

Weighted random sampling

◊ Weighted random sampling [Efraimidis Spirakis 06] generalizes min-wise
– For each item draw rn uniformly at random in range [0,1]
– Compute the ‘tag’ of an item as rn (1/xn)

– Keep the items with the k smallest tags
– Can prove the correctness of the exponential sampling distribution

◊ Can also make efficient via skip counting ideas

Sampling for Big Data

Priority Sampling

◊ Each item xi given priority zi = xi / ri with rn uniform random in (0,1]
◊ Maintain reservoir of k+1 items (xi , zi) of highest priority
◊ Estimation

– Let z* = (k+1)st highest priority
– Top-k priority items: weight estimate x’I = max{ xi , z* }
– All other items: weight estimate zero

◊ Statistics and bounds
– x’I unbiased; zero covariance: Cov[x’i , x’j] = 0 for i≠j

– Relative variance for any subset sum ≤ 1/(k-1) [Szegedy, 2006]

Sampling for Big Data

Priority Sampling in Databases

◊ One Time Sample Preparation
– Compute priorities of all items, sort in decreasing priority order

□ No discard
◊ Sample and Estimate

– Estimate any subset sum X(S) = iS xi
 by X’(S) = iS x’I

 for some S’  S
– Method: select items in decreasing priority order

◊ Two variants: bounded variance or complexity
1. S’ = first k items from S: relative variance bounded ≤ 1/(k-1)

□ x’I = max{ xi , z* } where z* = (k+1)st highest priority in S
1. S’ = items from S in first k: execution time O(k)

□ x’I = max{ xi , z* } where z* = (k+1)st highest priority
[Alon et. al., 2005]

Sampling for Big Data

Making Stream Samples Smarter

◊ Observation: we see the whole stream, even if we can’t store it
– Can keep more information about sampled items if repeated
– Simple information: if item sampled, count all repeats

◊ Counting Samples [Gibbons & Mattias 98]
– Sample new items with fixed probability p, count repeats as ci

– Unbiased estimate of total count: 1/p + (ci – 1)
◊ Sample and Hold [Estan & Varghese 02]: generalize to weighted keys

– New key with weight b sampled with probability 1 - (1-p)b

◊ Lower variance compared with independent sampling
– But sample size will grow as pn

◊ Adaptive sample and hold: reduce p when needed
– “Sticky sampling”: geometric decreases in p [Manku, Motwani 02]
– Much subsequent work tuning decrease in p to maintain sample size

Sampling for Big Data

Sketch Guided Sampling

◊ Go further: avoid sampling the heavy keys as much
– Uniform sampling will pick from the heavy keys again and again

◊ Idea: use an oracle to tell when a key is heavy [Kumar Xu 06]
– Adjust sampling probability accordingly

◊ Can use a “sketch” data structure to play the role of oracle
– Like a hash table with collisions, tracks approximate frequencies
– E.g. (Counting) Bloom Filters, Count-Min Sketch

◊ Track probability with which key is sampled, use HT estimators
– Set probability of sampling key with (estimated) weight w as

1/(1 + w) for parameter decreases as w increases
– Decreasing  improves accuracy, increases sample size

Sampling for Big Data

Challenges for Smart Stream Sampling

◊ Current router constraints
– Flow tables maintained in fast expensive SRAM

□ To support per packet key lookup at line rate

◊ Implementation requirements
– Sample and Hold: still need per packet lookup
– Sampled NetFlow: (uniform) sampling reduces lookup rate

□ Easier to implement despite inferior statistical properties

◊ Long development times to realize new sampling algorithms
◊ Similar concerns affect sampling in other applications

– Processing large amounts of data needs awareness of hardware
– Uniform sampling means no coordination needed in distributed setting

Sampling for Big Data

Future for Smarter Stream Sampling

◊ Software Defined Networking
– Current: proprietary software running on special vendor equipment
– Future: open software and protocols on commodity hardware

◊ Potentially offers flexibility in traffic measurement
– Allocate system resources to measurement tasks as needed
– Dynamic reconfiguration, fine grained tuning of sampling
– Stateful packet inspection and sampling for network security

◊ Technical challenges:
– High rate packet processing in software
– Transparent support from commodity hardware
– OpenSketch: [Yu, Jose, Miao, 2013]

◊ Same issues in other applications: use of commodity programmable HW

Sampling for Big Data

Stream Sampling:
Sampling as Cost Optimization

Sampling for Big Data

Matching Data to Sampling Analysis

◊ Generic problem 1: Counting objects: weight xi = 1
Bernoulli (uniform) sampling with probability p works fine

– Estimated subset count X’(S) = #{samples in S} / p
– Relative Variance (X’(S)) = (1/p -1)/X(S)

□ given p, get any desired accuracy for large enough S

◊ Generic problem 2: xi in Pareto distribution, a.k.a. 80-20 law
– Small proportion of objects possess a large proportion of total weight

□ How to best to sample objects to accurately estimate weight?
– Uniform sampling?

□ likely to omit heavy objects  big hit on accuracy
□ making selection set S large doesn’t help

– Select m largest objects ?
□ biased & smaller objects systematically ignored

Sampling for Big Data

Heavy Tails in the Internet and
Beyond
◊ Files sizes in storage
◊ Bytes and packets per network flow
◊ Degree distributions in web graph, social networks

Sampling for Big Data

Non-Uniform Sampling

◊ Extensive literature: see book by [Tille, “Sampling Algorithms”, 2006]
◊ Predates “Big Data”

– Focus on statistical properties, not so much computational
◊ IPPS: Inclusion Probability Proportional to Size

– Variance Optimal for HT Estimation

– Sampling probabilities for multivariate version: [Chao 1982, Tille 1996]
– Efficient stream sampling algorithm: [Cohen et. al. 2009]

Sampling for Big Data

Costs of Non-Uniform Sampling

◊ Independent sampling from n objects with weights {x1,… ,xn}
◊ Goal: find the “best” sampling probabilities {p1, … ,pn}
◊ Horvitz-Thompson: unbiased estimation of each xi by

◊ Two costs to balance:
1. Estimation Variance: Var(x’i) = x2

i (1/pi – 1)

2. Expected Sample Size: ipi

◊ Minimize Linear Combination Cost: i (xi
2(1/pi –1) + z2 pi)

– z expresses relative importance of small sample vs. small variance

otherwise0
selected i weightif px

x' ii
i






Sampling for Big Data

Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size
◊ Minimize Cost i (xi

2 (1/pi – 1) + z2 pi) subject to 1 ≥ pi ≥ 0
◊ Solution: pi = pz(xi) = min{1, xi /z}

– small objects (xi < z) selected with probability proportional to size
– large objects (xi ≥ z) selected with probability 1
– Call z the “sampling threshold”
– Unbiased estimator xi/pi =max{xi , z}

◊ Perhaps reminiscent of importance
sampling, but not the same:
– make no assumptions concerning

distribution of the x

pz(x)

1

z
x

Sampling for Big Data

Error Estimates and Bounds

◊ Variance Based:
– HT sampling variance for single object of weight xi

□ Var(x’i) = x2
i (1/pi – 1) = x2

i (1/min{1,xi/z} – 1) ≤ z xi

– Subset sum X(S)= iS xi
 is estimated by X’(S) = iS x’i

□ Var(X’(S)) ≤ z X(S)
◊ Exponential Bounds

– E.g. Prob[X’(S) = 0] ≤ exp(- X(S) / z)
◊ Bounds are simple and powerful

– depend only on subset sum X(S), not individual constituents

Sampling for Big Data

Sampled IP Traffic Measurements

◊ Packet Sampled NetFlow
– Sample packet stream in router to limit rate of key lookup: uniform 1/N
– Aggregate sampled packets into flow records by key

◊ Model: packet stream of (key, bytesize) pairs { (bi, ki) }
◊ Packet sampled flow record (b,k) where b = Σ {bi : i sampled ∧ ki = k}

– HT estimate b/N of total bytes in flow
◊ Downstream sampling of flow records in measurement infrastructure

– IPPS sampling, probability min{1, b/(Nz)}
◊ Chained variance bound for any subset sum X of flows

– Var(X’) ≤ (z + Nbmax) X where bmax = maximum packet byte size
– Regardless of how packets are distributed amongst flows
[Duffield, Lund, Thorup, IEEE ToIT, 2004]

Sampling for Big Data

Estimation Accuracy in Practice

◊ Estimate any subset sum comprising at least some fraction f of weight
◊ Suppose: sample size m
◊ Analysis: typical estimation error ε (relative standard deviation) obeys

◊ 2*16 = same storage needed for aggregates over 16 bit address prefixes
□ But sampling gives more flexibility to estimate traffic within aggregates

kf
1ε 

Estimate fraction f = 0.1%
with typical relative error

12%:

m

Sampling for Big Data

Heavy Hitters:
Exact vs. Aggregate vs. Sampled
◊ Sampling does not tell you where the interesting features are

– But does speed up the ability to find them with existing tools
◊ Example: Heavy Hitter Detection

– Setting: Flow records reporting 10GB/s traffic stream
– Aim: find Heavy Hitters = IP prefixes comprising ≥ 0.1% of traffic
– Response time needed: 5 minute

◊ Compare:
– Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
– 64k aggregates over 16 bit prefixes: no deeper drill-down possible
– Sampled: 64k flow records: any aggregate ≥ 0.1% accurate to 10%

Exact Aggregate Sampled

Sampling for Big Data

Cost Optimization for Sampling

Several different approaches optimize for different objectives:
1. Fixed Sample Size IPPS Sample

– Variance Optimal sampling: minimal variance unbiased estimation
1. Structure Aware Sampling

– Improve estimation accuracy for subnet queries using topological cost
1. Fair Sampling

– Adaptively balance sampling budget over subpopulations of flows
– Uniform estimation accuracy regardless of subpopulation size

1. Stable Sampling
– Increase stability of sample set by imposing cost on changes

Sampling for Big Data

IPPS Stream Reservoir Sampling
◊ Each arriving item:

– Provisionally include item in reservoir
– If m+1 items, discard 1 item randomly

□ Calculate threshold z to sample m items on average: z solves i pz(xi) = m
□ Discard item i with probability qi =1 – pz(xi)
□ Adjust m surviving xi with Horvitz-Thompson x’i = xi / pi = max{xi,z}

◊ Efficient Implementation:
– Computational cost O(log m) per item, amortized cost O(log log m)

[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]

x9
x8
x7
x6
x5
x4
x3
x2
x1

Example:
m=9

x10

Recalculate
threshold z:





10

1i
i 9z}xmin{1,

z

0

1

Recalculate
Discard probs:

z}xmin{1, - 1q i i 

x7
x6
x5
x4
x3
x2
x1

x9
x8

x10

Adjust weights:
z},max{xx' i i 

x’9
x’8

x’10

x’6
x’5
x’4
x’3
x’2
x’1

Sampling for Big Data

Structure (Un)Aware Sampling

◊ Sampling is oblivious to structure in keys (IP address hierarchy)
– Estimation disperses the weight of discarded items to surviving samples

◊ Queries structure aware: subset sums over related keys (IP subnets)
– Accuracy on LHS is decreased by discarding weight on RHS



0 1

00 01 10

000 001 010 011 100 101 110 111

11

Sampling for Big Data

Localizing Weight Redistribution

◊ Initial weight set {xi : iS} for some S  Ω
– E.g. Ω = possible IP addresses, S =observed IP addresses

◊ Attribute “range cost” C({xi : iR}) for each weight subset RS
– Possible factors for Range Cost:

□ Sampling variance
□ Topology e.g. height of lowest common ancestor

– Heuristics: R* = Nearest Neighbor {xi , xj} of minimal xixj

◊ Sample k items from S:
– Progressively remove one item from

subset with minimal range cost:
– While(|S| > k)

□ Find R*S of minimal range cost.
□ Remove a weight from R* w/ VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]



0 1

00 01 10

000 001 010 011 100 101 110 111

11

No change outside
subtree below

closest ancestor

Order of magnitude reduction in
average subnet error vs. VarOpt

Sampling for Big Data

Fair Sampling Across Subpopulations

◊ Analysis queries often focus on specific subpopulations
– E.g. networking: different customers, user applications, network paths

◊ Wide variation in subpopulation size
– 5 orders of magnitude variation in traffic on interfaces of access router

◊ If uniform sampling across subpopulations:
– Poor estimation accuracy on subset sums within small subpopulations

Sample

Color = subpopulation

 , = interesting items

– occurrence proportional to subpopulation size

Uniform Sampling across subpopulations:

– Difficult to track proportion of interesting
items within small subpopulations:

Sampling for Big Data

Fair Sampling Across Subpopulations

◊ Minimize relative variance by sharing budget m over subpopulations
– Total n objects in subpopulations n1,…,nd with ini=n
– Allocate budget mi to each subpopulation ni with imi=m

◊ Minimize average population relative variance R = const. i1/mi

◊ Theorem:
– R minimized when {mi} are Max-Min Fair share of m under demands {ni}

◊ Streaming
– Problem: don’t know subpopulation sizes {ni} in advance

◊ Solution: progressive fair sharing as reservoir sample
– Provisionally include each arrival
– Discard 1 item as VarOpt sample from any maximal subpopulation

◊ Theorem [Duffield; Sigmetrics 2012]:
– Max-Min Fair at all times; equality in distribution with VarOpt samples {mi from ni}

Sampling for Big Data

Stable Sampling

◊ Setting: Sampling a population over successive periods
◊ Sample independently at each time period?

– Cost associated with sample churn
– Time series analysis of set of relatively stable keys

◊ Find sampling probabilities through cost minimization
– Minimize Cost = Estimation Variance + z * E[#Churn]

◊ Size m sample with maximal expected churn D
– weights {xi}, previous sampling probabilities {pi}
– find new sampling probabilities {qi} to minimize cost of taking m samples
– Minimize ix2

i / qi subject to 1 ≥ qi ≥ 0, I qi = m and I | pi – qi | ≤ D
[Cohen, Cormode, Duffield, Lund 13]

Sampling for Big Data

Summary of Part 1

◊ Sampling as a powerful, general summarization technique
◊ Unbiased estimation via Horvitz-Thompson estimators
◊ Sampling from streams of data

– Uniform sampling: reservoir sampling
– Weighted generalizations: sample and hold, counting samples

◊ Advances in stream sampling
– The cost principle for sample design, and IPPS methods
– Threshold, priority and VarOpt sampling
– Extending the cost principle:

□ structure aware, fair sampling, stable sampling, sketch guided

Sampling for Big Data

Current Directions in Sampling

Sampling for Big Data

Role and Challenges for Sampling

◊ Matching
– Sampling mediates between data characteristics and analysis needs
– Example: sample from power-law distribution of bytes per flow…

□ but also make accurate estimates from samples
□ simple uniform sampling misses the large flows

◊ Balance
– Weighted sampling across key-functions: e.g. customers, network paths,

geolocations
□ cover small customers, not just large
□ cover all network elements, not just highly utilized

◊ Consistency
– Sample all views of same event, flow, customer, network element

□ across different datasets, at different times
□ independent sampling  small intersection of views

Sampling for Big Data

Sampling and Big Data Systems

◊ Sampling is still a useful tool in cluster computing
– Reduce the latency of experimental analysis and algorithm design

◊ Sampling as an operator is easy to implement in MapReduce
– For uniform or weighted sampling of tuples

◊ Graph computations are a core motivator of big data
– PageRank as a canonical big computation
– Graph-specific systems emerging (Pregel, LFgraph, Graphlab, Giraph…)
– But… sampling primitives not yet prevalent in evolving graph systems

◊ When to do the sampling?
– Option 1: Sample as an initial step in the computation

□ Fold sample into the initial “Map” step
– Option 2: Sample to create a stored sample graph before computation

□ Allows more complex sampling, e.g. random walk sampling

Sampling for Big Data

Sampling + KDD

◊ The interplay between sampling and data mining is not well understood
– Need an understanding of how ML/DM algorithms are affected by sampling
– E.g. how big a sample is needed to build an accurate classifier?
– E.g. what sampling strategy optimizes cluster quality

◊ Expect results to be method specific
– I.e. “IPPS + k-means” rather than “sample + cluster”

Sampling for Big Data

Sampling and Privacy

◊ Current focus on privacy-preserving data mining
– Deliver promise of big data without sacrificing privacy?
– Opportunity for sampling to be part of the solution

◊ Naïve sampling provides “privacy in expectation”
– Your data remains private if you aren’t included in the sample…

◊ Intuition: uncertainty introduced by sampling contributes to privacy
– This intuition can be formalized with different privacy models

◊ Sampling can be analyzed in the context of differential privacy
– Sampling alone does not provide differential privacy
– But applying a DP method to sampled data does guarantee privacy
– A tradeoff between sampling rate and privacy parameters

□ Sometimes, lower sampling rate improves overall accuracy

Sampling for Big Data

Advert: Now Hiring…

◊ Nick Duffield, Texas A&M
– Phds in big data, graph sampling
– Nick.Duffield@gmail.com

◊ Graham Cormode, University of Warwick UK
– Phds in big data summarization

(graphs and matrices, funded by MSR)
– Postdocs in privacy and data modeling

(funded by EC, AT&T)
– G.Cormode@warwick.ac.uk

Sampling for Big Data

That’s all!

Thank you!

