Yue Tan

University of Electronic Science and Technology of China

tanxiangyueer@gmail.com

Big Data

- "Big" data arises in many forms:
 - Physical Measurements: from science (physics, astronomy)
 - Medical data: genetic sequences, detailed time series
 - Activity data: GPS location, social network activity
 - Business data: customer behavior tracking at fine detail

Common themes:

- Data is large, and growing
- There are important patterns and trends in the data
- We don't fully know where to look or how to find them

Why Reduce?

- Although "big" data is about more than just the volume... ...most big data is big!
- It is not always possible to store the data in full
 - Many applications (telecoms, ISPs, search engines) can't keep everything
- It is inconvenient to work with data in full
 - Just because we can, doesn't mean we should
- It is faster to work with a compact summary
 - Better to explore data on a laptop than a cluster

Why Sample?

- Sampling has an intuitive semantics
 - We obtain a smaller data set with the same structure
- Stimating on a sample is often straightforward
 - Run the analysis on the sample that you would on the full data
 - Some rescaling/reweighting may be necessary
- Sampling is general and agnostic to the analysis to be done
 - Other summary methods only work for certain computations
 - Though sampling can be tuned to optimize some criteria
- Sampling is (usually) easy to understand
 - So prevalent that we have an intuition about sampling

Alternatives to Sampling

- Sampling is not the only game in town
 - Many other data reduction techniques by many names
- Dimensionality reduction methods
 - PCA, SVD, eigenvalue/eigenvector decompositions
 - Costly and slow to perform on big data
- Sketching" techniques for streams of data
 - Hash based summaries via random projections
 - Complex to understand and limited in function
- Other transform/dictionary based summarization methods
 - Wavelets, Fourier Transform, DCT, Histograms
 - Not incrementally updatable, high overhead

Health Warning: contains probabilities

- Some probability basics are assumed
 - Concepts of probability, expectation, variance of random variables
 - Allude to concentration of measure (Exponential/Chernoff bounds)

$$\operatorname{var}\left(\frac{k}{n}\right) = \operatorname{E}\left[\operatorname{var}\left(\frac{k}{n}\middle|\,\theta\right)\right] + \operatorname{var}\left[\operatorname{E}\left(\frac{k}{n}\middle|\,\theta\right)\right]$$
$$= \operatorname{E}\left[\left(\frac{1}{n}\right)\theta(1-\theta)\middle|\,\mu,M\right] + \operatorname{var}\left(\theta|\mu,M\right)$$
$$= \frac{1}{n}\left(\mu(1-\mu)\right) + \frac{n-1}{n}\frac{(\mu(1-\mu))}{M+1}$$
$$= \frac{\mu(1-\mu)}{n}\left(1 + \frac{n-1}{M+1}\right).$$

Outline

- Motivating application: sampling in large ISP networks
- Basics of sampling: concepts and estimation
- Stream sampling: uniform and weighted case
 - Variations: Concise sampling, sample and hold, sketch guided
- Advanced stream sampling: sampling as cost optimization
 - VarOpt, priority, structure aware, and stable sampling
- *Graph sampling
 - Node, edge and subgraph sampling
- Conclusion and future directions

Sampling as a Mediator of Constraints

Motivating Application: ISP Data

- Will motivate many results with application to ISPs
- Many reasons to use such examples:
 - Expertise: tutors from telecoms world
 - Demand: many sampling methods developed in response to ISP needs
 - Practice: sampling widely used in ISP monitoring, built into routers
 - Prescience: ISPs were first to hit many "big data" problems
 - Variety: many different places where sampling is needed
- First, a crash-course on ISP networks...

Structure of Large ISP Networks

Sampling for Big Data Measuring the ISP Network: Data Sources

Why Summarize (ISP) Big Data?

- When transmission bandwidth for measurements is limited
 - Not such a big issue in ISPs with in-band collection
- Typically raw accumulation is not feasible (even for nation states)
 - High rate streaming data
 - Maintain historical summaries for baselining, time series analysis
- To facilitate fast queries
 - When infeasible to run exploratory queries over full data
- As part of hierarchical query infrastructure:
 - Maintain full data over limited duration window
 - Drill down into full data through one or more layers of summarization

Sampling has been proved to be a flexible method to accomplish this

Data Scale: Summarization and Sampling

Traffic Measurement in the ISP Network

Massive Dataset: Flow Records

- IP Flow: set of packets with common key observed close in time
- Flow Key: IP src/dst address, TCP/UDP ports, ToS,... [64 to 104+ bits]
- Flow Records:
 - Protocol level summaries of flows, compiled and exported by routers
 - Flow key, packet and byte counts, first/last packet time, some router state
 - Realizations: Cisco Netflow, IETF Standards
- Scale: 100's TeraBytes of flow records daily are generated in a large ISP
- Output State of the state of
 - Capacity planning (months),...., detecting network attacks (seconds)
- Analysis tasks
 - Easy: timeseries of predetermined aggregates (e.g. address prefixes)
 - Hard: fast queries over exploratory selectors, history, communications subgraphs

Flows, Flow Records and Sampling

- Two types of sampling used in practice for internet traffic:
 - 1. Sampling packet stream in router prior to forming flow records
 - □ Limits the rate of lookups of packet key in flow cache
 - □ Realized as Packet Sampled NetFlow (more later...)
 - 1. Downstream sampling of flow records in collection infrastructure
 - □ Limits transmission bandwidth, storage requirements
 - □ Realized in ISP measurement collection infrastructure (more later...)
- Two cases illustrative of general property
 - Different underlying distributions require different sample designs
 - Statistical optimality sometimes limited by implementation constraints
 - □ Availability of router storage, processing cycles

Abstraction: Keyed Data Streams

Data Model: objects are keyed weights

Objects (x,k): Weight x; key k

□ Example 1: objects = packets, x = bytes, k = key (source/destination)

Example 2: objects = flows, x = packets or bytes, k = key

□ Example 3: objects = account updates, x = credit/debit, k = account ID

Stream of keyed weights, {(x_i, k_i): i = 1,2,...,n}

- Generic query: subset sums
 - $X(S) = \sum_{i \in S} x_i$ for $S \subset \{1, 2, ..., n\}$ i.e. total weight of index subset S

- Typically S = S(K) = {i: $k_i \in K$ } : objects with keys in K

□ Example 1, 2: X(S(K)) = total bytes to given IP dest address / UDP port

□ Example 3: X(S(K)) = total balance change over set of accounts

Aim: Compute fixed size summary of stream that can be used to estimate arbitrary subset sums with known error bounds

Inclusion Sampling and Estimation

Horvitz-Thompson Estimation:

- Object of size x_i sampled with probability p_i
- Unbiased estimate $x'_i = x_i / p_i$ (if sampled), 0 if not sampled: $E[x'_i] = x_i$

♦ Linearity:

- Estimate of subset sum = sum of matching estimates
- Subset sum X(S)= $\sum_{i \in S} x_i$ is estimated by X'(S) = $\sum_{i \in S} x'_i$
- ♦ Accuracy:
 - Exponential Bounds: $Pr[|X'(S) X(S)| > \delta X(S)] \le exp[-g(\delta)X(S)]$
 - Confidence intervals: $X(S) \in [X^{-}(\epsilon), X^{+}(\epsilon)]$ with probability 1 ϵ

♦ Futureproof:

- Don't need to know queries at time of sampling
 - □ "Where/where did that suspicious UDP port first become so active?"
 - "Which is the most active IP address within than anomalous subnet?"
- Retrospective estimate: subset sum over relevant keyset

Independent Stream Sampling

Bernoulli Sampling

- IID sampling of objects with some probability p
- Sampled weight x has HT estimate x/p
- Poisson Sampling
 - Weight x_i sampled with probability p_i ; HT estimate x_i / p_i
- When to use Poisson vs. Bernoulli sampling?
 - Elephants and mice: Poisson allows probability to depend on weight...
- What is best choice of probabilities for given stream {x_i}?

Bernoulli Sampling

- The easiest possible case of sampling: all weights are 1
 - N objects, and want to sample k from them uniformly
 - Each possible subset of k should be equally likely
- Oniformly sample an index from N (without replacement) k times
 - Some subtleties: truly random numbers from [1...N] on a computer?
 - Assume that random number generators are good enough
- Common trick in DB: assign a random number to each item and sort
 - Costly if N is very big, but so is random access
- Interesting problem: take a single linear scan of data to draw sample
 - Streaming model of computation: see each element once
 - Application: IP flow sampling, too many (for us) to store

Reservoir Sampling

"Reservoir sampling" described by [Knuth 69, 81]; enhancements [Vitter 85]

- ♦ Fixed size k uniform sample from arbitrary size N stream in one pass
 - No need to know stream size in advance
 - Include first k items w.p. 1
 - Include item n > k with probability p(n) = k/n, n > k

□ Pick j uniformly from {1,2,...,n}

□ If $j \le k$, swap item n into location j in reservoir, discard replaced item

- Neat proof shows the uniformity of the sampling method:
 - Let S_n = sample set after n arrivals

 $\begin{array}{c} m \ (< n) \\ \hline \\ k=7 \\ \hline \\ Previously sampled item: induction \\ \end{array}$

$$m \in S_{n\text{-}1} \text{ w.p. } p_{n\text{-}1} \Longrightarrow \ m \in S_n \text{ w.p. } p_{n\text{-}1} * (1 - p_n \text{ / } k) = p_n$$

Reservoir Sampling: Skip Counting

- Simple approach: check each item in turn
 - O(1) per item:
 - Fine if computation time < interarrival time
 - Otherwise build up computation backlog O(N)
- Better: "skip counting"
 - Find random index m(n) of next selection > n
 - Distribution: Prob[m(n) \leq m] = 1 $(1-p_{n+1})^*(1-p_{n+2})^*...^*(1-p_m)$
- Expected number of selections from stream is

 $k + \sum_{k < m \le N} p_m = k + \sum_{k < m \le N} k/m = O(k (1 + \ln (N/k)))$

Vitter'85 provided algorithm with this average running time

Reservoir Sampling via Order Sampling

- Order sampling a.k.a. bottom-k sample, min-hashing
- Output Stream into reservoir of size k
- Solution Each arrival n: generate one-time random value $r_n \in U[0,1]$
 - r_n also known as hash, rank, tag...
- Store k items with the smallest random tags

- Each item has same chance of least tag, so uniform
- Fast to implement via priority queue
- Can run on multiple input streams separately, then merge

Handling Weights

- So far: uniform sampling from a stream using a reservoir
- Extend to non-uniform sampling from weighted streams
 - Easy case: k=1
 - Sampling probability $p(n) = x_n/W_n$ where $W_n = \sum_{i=1}^n x_i$
- k>1 is harder
 - Can have elements with large weight: would be sampled with prob 1?
- Number of different weighted order-sampling schemes proposed to realize desired distributional objectives
 - Rank r_n = f(u_n, ~x_n) for some function f and $u_n \in U[0,1]$
 - k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
 - [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006]
 - Order PPS Sampling [Ohlsson 1990, Rosen 1997]
 - Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]

Weighted random sampling

- Veighted random sampling [Efraimidis Spirakis 06] generalizes min-wise
 - For each item draw r_n uniformly at random in range [0,1]
 - Compute the 'tag' of an item as $r_n (1/x_n)$
 - Keep the items with the k smallest tags
 - Can prove the correctness of the exponential sampling distribution
- Can also make efficient via skip counting ideas

Priority Sampling

- Each item x_i given priority $z_i = x_i / r_i$ with r_n uniform random in (0,1]
- Maintain reservoir of k+1 items (x_i, z_i) of highest priority
- Estimation
 - Let z* = (k+1)st highest priority
 - Top-k priority items: weight estimate x'₁ = max{ x_i, z* }
 - All other items: weight estimate zero
- Statistics and bounds
 - x'_{i} unbiased; zero covariance: $Cov[x'_{i}, x'_{j}] = 0$ for $i \neq j$
 - Relative variance for any subset sum $\leq 1/(k-1)$ [Szegedy, 2006]

Priority Sampling in Databases

- One Time Sample Preparation
 - Compute priorities of all items, sort in decreasing priority order
 No discard
- Sample and Estimate
 - Estimate any subset sum X(S) = $\sum_{i \in S} x_i$ by X'(S) = $\sum_{i \in S} x'_i$ for some S' \subset S
 - Method: select items in decreasing priority order
- Two variants: bounded variance or complexity
 - 1. S' = first k items from S: relative variance bounded $\leq 1/(k-1)$

 \Box x'₁ = max{ x_i, z* } where z* = (k+1)st highest priority in S

1. S' = items from S in first k: execution time O(k)

 $\Box x'_{1} = \max\{x_{i}, z^{*}\}$ where $z^{*} = (k+1)^{st}$ highest priority [Alon et. al., 2005]

Making Stream Samples Smarter

- Observation: we **see** the whole stream, even if we can't store it
 - Can keep more information about sampled items if repeated
 - Simple information: if item sampled, count all repeats
- Counting Samples [Gibbons & Mattias 98]
 - Sample new items with fixed probability p, count repeats as c_i
 - Unbiased estimate of total count: $1/p + (c_i 1)$
- Sample and Hold [Estan & Varghese 02]: generalize to weighted keys
 - New key with weight b sampled with probability 1 (1-p)^b
- Lower variance compared with independent sampling
 - But sample size will grow as pn
- Adaptive sample and hold: reduce p when needed
 - "Sticky sampling": geometric decreases in p [Manku, Motwani 02]
 - Much subsequent work tuning decrease in p to maintain sample size

Sketch Guided Sampling

- Go further: avoid sampling the heavy keys as much
 - Uniform sampling will pick from the heavy keys again and again
- Idea: use an oracle to tell when a key is heavy [Kumar Xu 06]
 - Adjust sampling probability accordingly
- Can use a "sketch" data structure to play the role of oracle
 - Like a hash table with collisions, tracks approximate frequencies
 - E.g. (Counting) Bloom Filters, Count-Min Sketch
- Track probability with which key is sampled, use HT estimators
 - Set probability of sampling key with (estimated) weight w as $1/(1 + \epsilon w)$ for parameter ϵ : decreases as w increases
 - Decreasing ε improves accuracy, increases sample size

Challenges for Smart Stream Sampling

Current router constraints

- Flow tables maintained in fast expensive SRAM
 - □ To support per packet key lookup at line rate
- Implementation requirements
 - Sample and Hold: still need per packet lookup
 - Sampled NetFlow: (uniform) sampling reduces lookup rate
 - Easier to implement despite inferior statistical properties
- Long development times to realize new sampling algorithms
- Similar concerns affect sampling in other applications
 - Processing large amounts of data needs awareness of hardware
 - Uniform sampling means no coordination needed in distributed setting

Future for Smarter Stream Sampling

Software Defined Networking

- Current: proprietary software running on special vendor equipment
- Future: open software and protocols on commodity hardware
- Potentially offers flexibility in traffic measurement
 - Allocate system resources to measurement tasks as needed
 - Dynamic reconfiguration, fine grained tuning of sampling
 - Stateful packet inspection and sampling for network security
- Technical challenges:
 - High rate packet processing in software
 - Transparent support from commodity hardware
 - OpenSketch: [Yu, Jose, Miao, 2013]
- Same issues in other applications: use of commodity programmable HW

Stream Sampling: Sampling as Cost Optimization

Matching Data to Sampling Analysis

Generic problem 1: Counting objects: weight x_i = 1
 Bernoulli (uniform) sampling with probability p works fine

- Estimated subset count X'(S) = #{samples in S} / p
- Relative Variance (X'(S)) = (1/p 1)/X(S)

□ given p, get any desired accuracy for large enough S

- Generic problem 2: x_i in Pareto distribution, a.k.a. 80-20 law
 - Small proportion of objects possess a large proportion of total weight
 How to best to sample objects to accurately estimate weight?
 - Uniform sampling?
 - \Box likely to omit heavy objects \Rightarrow big hit on accuracy
 - □ making selection set S large doesn't help
 - Select m largest objects ?
 - biased & smaller objects systematically ignored

Heavy Tails in the Internet and Beyond

- Files sizes in storage
- Sytes and packets per network flow
- Degree distributions in web graph, social networks

Non-Uniform Sampling

- Extensive literature: see book by [Tille, "Sampling Algorithms", 2006]
- Predates "Big Data"
 - Focus on statistical properties, not so much computational
- IPPS: Inclusion Probability Proportional to Size
 - Variance Optimal for HT Estimation
 - Sampling probabilities for multivariate version: [Chao 1982, Tille 1996]
 - Efficient stream sampling algorithm: [Cohen et. al. 2009]

Costs of Non-Uniform Sampling

- Independent sampling from n objects with weights {x₁,...,x_n}
- Goal: find the "best" sampling probabilities {p₁, ..., p_n}
- Horvitz-Thompson: unbiased estimation of each x_i by

 $\mathbf{x'}_{i} = \begin{cases} \mathbf{x}_{i}/\mathbf{p}_{i} & \text{if weight i selected} \\ \mathbf{0} & \text{otherwise} \end{cases}$

- Two costs to balance:
 - 1. Estimation Variance: $Var(x'_i) = x^2_i (1/p_i 1)$
 - 2. Expected Sample Size: $\Sigma_i p_i$
- Minimize Linear Combination Cost: $\sum_{i} (x_i^2(1/p_i 1) + z^2 p_i)$
 - z expresses relative importance of small sample vs. small variance

Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size

- ♦ Minimize Cost Σ_i (x_i^2 ($1/p_i 1$) + $z^2 p_i$) subject to $1 \ge p_i \ge 0$
- Solution: $p_i = p_z(x_i) = min\{1, x_i / z\}$
 - small objects $(x_i < z)$ selected with probability proportional to size
 - large objects $(x_i \ge z)$ selected with probability 1
 - Call z the "sampling threshold"
 - Unbiased estimator $x_i/p_i = max\{x_i, z\}$
- Perhaps reminiscent of importance sampling, but not the same:
 - make no assumptions concerning distribution of the x

Error Estimates and Bounds

- Variance Based:
 - HT sampling variance for single object of weight x_i
 □ Var(x'_i) = x²_i (1/p_i 1) = x²_i (1/min{1,x_i/z} 1) ≤ z x_i
 - Subset sum X(S) = Σ_{i∈S} x_i is estimated by X'(S) = Σ_{i∈S} x'_i
 □ Var(X'(S)) ≤ z X(S)
- Exponential Bounds
 - E.g. $Prob[X'(S) = 0] \le exp(-X(S) / z)$
- Bounds are simple and powerful
 - depend only on subset sum X(S), not individual constituents

Sampled IP Traffic Measurements

- Packet Sampled NetFlow
 - Sample packet stream in router to limit rate of key lookup: uniform 1/N
 - Aggregate sampled packets into flow records by key
- Model: packet stream of (key, bytesize) pairs { (b_i, k_i) }
- Packet sampled flow record (b,k) where $b = \Sigma \{b_i : i \text{ sampled } \land k_i = k\}$
 - HT estimate b/N of total bytes in flow
- Ownstream sampling of flow records in measurement infrastructure
 - IPPS sampling, probability min{1, b/(Nz)}
- Chained variance bound for any subset sum X of flows
 - $Var(X') \le (z + Nb_{max}) X$ where $b_{max} = maximum packet byte size$
 - Regardless of how packets are distributed amongst flows
 [Duffield, Lund, Thorup, IEEE ToIT, 2004]

Estimation Accuracy in Practice

- Sestimate any subset sum comprising at least some fraction f of weight
- Suppose: sample size m
- Analysis: typical estimation error ε (relative standard deviation) obeys

2*16 = same storage needed for aggregates over 16 bit address prefixes

□ But sampling gives more flexibility to estimate traffic within aggregates

Heavy Hitters: Exact vs. Aggregate vs. Sampled

- Sampling does not tell you where the interesting features are
 - But does speed up the ability to find them with existing tools
- Example: Heavy Hitter Detection
 - Setting: Flow records reporting 10GB/s traffic stream
 - − Aim: find Heavy Hitters = IP prefixes comprising \ge 0.1% of traffic
 - Response time needed: 5 minute
- Compare:
 - Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
 - 64k aggregates over 16 bit prefixes: no deeper drill-down possible
 - − Sampled: 64k flow records: **any** aggregate $\ge 0.1\%$ accurate to 10%

Cost Optimization for Sampling

Several different approaches optimize for different objectives:

- 1. Fixed Sample Size IPPS Sample
 - Variance Optimal sampling: minimal variance unbiased estimation
- 1. Structure Aware Sampling
 - Improve estimation accuracy for subnet queries using topological cost
- 1. Fair Sampling
 - Adaptively balance sampling budget over subpopulations of flows
 - Uniform estimation accuracy regardless of subpopulation size
- 1. Stable Sampling
 - Increase stability of sample set by imposing cost on changes

IPPS Stream Reservoir Sampling

- Each arriving item:
 - Provisionally include item in reservoir
 - If m+1 items, discard 1 item randomly
 - \Box Calculate threshold z to sample m items on average: z solves $\Sigma_i p_z(x_i) = m$
 - \Box Discard item i with probability $q_i = 1 p_z(x_i)$
 - □ Adjust m surviving x_i with Horvitz-Thompson $x'_i = x_i / p_i = \max\{x_i, z\}$
- Efficient Implementation:
 - Computational cost O(log m) per item, amortized cost O(log log m)

[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]

Structure (Un)Aware Sampling

- Sampling is oblivious to structure in keys (IP address hierarchy)
 - Estimation disperses the weight of discarded items to surviving samples

Queries structure aware: subset sums over related keys (IP subnets)

Accuracy on LHS is decreased by discarding weight on RHS

Localizing Weight Redistribution

- Initial weight set $\{x_i : i \in S\}$ for some $S \subset \Omega$ \diamond
 - E.g. Ω = possible IP addresses, S = observed IP addresses
- Attribute "range cost" $C(\{x_i : i \in R\})$ for each weight subset $R \subseteq S$
 - Possible factors for Range Cost:
 - □ Sampling variance
 - □ Topology e.g. height of lowest common ancestor
 - Heuristics: R^* = Nearest Neighbor {x_i, x_i} of minimal x_ix_i
- Sample k items from S:
 - Progressively remove one item from subset with minimal range cost:
 - While(|S| > k)
 - \square Find R* \subseteq S of minimal range cost.
 - \square Remove a weight from R^{*} w/VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]

Order of magnitude reduction in average subnet error vs. VarOpt

Fair Sampling Across Subpopulations

- Analysis queries often focus on specific subpopulations
 - E.g. networking: different customers, user applications, network paths
- Wide variation in subpopulation size
 - 5 orders of magnitude variation in traffic on interfaces of access router
- If uniform sampling across subpopulations:
 - Poor estimation accuracy on subset sums within small subpopulations

- Color = subpopulation
- ▲ , ▲ = interesting items
 - occurrence proportional to subpopulation size

Uniform Sampling across subpopulations:

 Difficult to track proportion of interesting items within small subpopulations:

Fair Sampling Across Subpopulations

- Minimize **relative** variance by sharing budget m over subpopulations
 - Total n objects in subpopulations $n_1, ..., n_d$ with $\sum_i n_i = n$
 - Allocate budget m_i to each subpopulation n_i with $\Sigma_i m_i \text{=} m$
- Minimize average population relative variance $R = \text{const.} \Sigma_i 1/m_i$
- Theorem:
 - R minimized when $\{m_i\}$ are Max-Min Fair share of m under demands $\{n_i\}$
- Streaming
 - Problem: don't know subpopulation sizes $\{n_i\}$ in advance
- Solution: progressive fair sharing as reservoir sample
 - Provisionally include each arrival
 - Discard 1 item as VarOpt sample from any maximal subpopulation
- Theorem [Duffield; Sigmetrics 2012]:
 - Max-Min Fair at all times; equality in distribution with VarOpt samples $\{m_i \text{ from } n_i\}$

Stable Sampling

- Setting: Sampling a population over successive periods
- Sample independently at each time period?
 - Cost associated with sample churn
 - Time series analysis of set of relatively stable keys
- Find sampling probabilities through cost minimization
 - Minimize Cost = Estimation Variance + z * E[#Churn]
- Size m sample with maximal expected churn D
 - weights {x_i}, previous sampling probabilities { p_i }
 - find new sampling probabilities $\{q_i\}$ to minimize cost of taking m samples

- Minimize $\Sigma_i x_i^2 / q_i$ subject to $1 \ge q_i \ge 0$, $\Sigma_i q_i = m$ and $\Sigma_i | p_i - q_i | \le D$

[Cohen, Cormode, Duffield, Lund 13]

Summary of Part 1

- Sampling as a powerful, general summarization technique
- Unbiased estimation via Horvitz-Thompson estimators
- Sampling from streams of data
 - Uniform sampling: reservoir sampling
 - Weighted generalizations: sample and hold, counting samples
- Advances in stream sampling
 - The cost principle for sample design, and IPPS methods
 - Threshold, priority and VarOpt sampling
 - Extending the cost principle:
 - □ structure aware, fair sampling, stable sampling, sketch guided

Current Directions in Sampling

Role and Challenges for Sampling

- Matching
 - Sampling mediates between data characteristics and analysis needs
 - Example: sample from power-law distribution of bytes per flow...
 - but also make accurate estimates from samples
 - □ simple uniform sampling misses the large flows
- Balance
 - Weighted sampling across key-functions: e.g. customers, network paths, geolocations
 - □ cover small customers, not just large
 - □ cover all network elements, not just highly utilized
- Consistency
 - Sample all views of same event, flow, customer, network element
 across different datasets, at different times
 - \Box independent sampling \Rightarrow small intersection of views

Sampling and Big Data Systems

- Sampling is still a useful tool in cluster computing
 - Reduce the latency of experimental analysis and algorithm design
- Sampling as an operator is easy to implement in MapReduce
 - For uniform or weighted sampling of tuples
- Graph computations are a core motivator of big data
 - PageRank as a canonical big computation
 - Graph-specific systems emerging (Pregel, LFgraph, Graphlab, Giraph...)
 - But... sampling primitives not yet prevalent in evolving graph systems
- When to do the sampling?
 - Option 1: Sample as an initial step in the computation
 □ Fold sample into the initial "Map" step
 - Option 2: Sample to create a stored sample graph before computation
 Allows more complex sampling, e.g. random walk sampling

Sampling + KDD

The interplay between sampling and data mining is not well understood

- Need an understanding of how ML/DM algorithms are affected by sampling
- E.g. how big a sample is needed to build an accurate classifier?
- E.g. what sampling strategy optimizes cluster quality
- Expect results to be method specific
 - I.e. "IPPS + k-means" rather than "sample + cluster"

Sampling and Privacy

- Current focus on privacy-preserving data mining
 - Deliver promise of big data without sacrificing privacy?
 - Opportunity for sampling to be part of the solution
- Naïve sampling provides "privacy in expectation"
 - Your data remains private if you aren't included in the sample...
- Intuition: uncertainty introduced by sampling *contributes* to privacy
 - This intuition can be formalized with different privacy models
- Sampling can be analyzed in the context of differential privacy
 - Sampling alone does **not** provide differential privacy
 - But applying a DP method to sampled data does guarantee privacy
 - A tradeoff between sampling rate and privacy parameters
 - □ Sometimes, lower sampling rate improves overall accuracy

Advert: Now Hiring...

- Nick Duffield, Texas A&M
 - Phds in big data, graph sampling
 - Nick.Duffield@gmail.com
- Graham Cormode, University of Warwick UK
 - Phds in big data summarization (graphs and matrices, funded by MSR)
 - Postdocs in privacy and data modeling (funded by EC, AT&T)
 - <u>G.Cormode@warwick.ac.uk</u>

That's all!

Thank you!