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Sampling for Big Data

Big Data

¢ “Big” data arises in many forms:
— Physical Measurements: from science (physics, astronomy)
— Medical data: genetic sequences, detailed time series
— Activity data: GPS location, social network activity
— Business data: customer behavior tracking at fine detail

¢ Common themes: ignifican Em.izr.,,ist

— Data is large, and growing
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Sampling for Big Data
Why Reduce?

¢ Although “big” data is about more than just the volume...
...most big data is big!

¢ It is not always possible to store the data in full

— Many applications (telecoms, ISPs, search engines) can’t keep everything
¢ Itis inconvenient to work with data in full

— Just because we can, doesn’t mean we should
0 Itis faster to work with a compact summary

— Better to explore data on a laptop than a cluster




Sampling for Big Data
Why Sample?

¢ Sampling has an intuitive semantics
— We obtain a smaller data set with the same structure

¢ Estimating on a sample is often straightforward
— Run the analysis on the sample that you would on the full data
— Some rescaling/reweighting may be necessary

¢ Sampling is general and agnostic to the analysis to be done
— Other summary methods only work for certain computations
— Though sampling can be tuned to optimize some criteria

¢ Sampling is (usually) easy to understand
— So prevalent that we have an intuition about sampling
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Sampling for Big Data

Alternatives to Sampling

¢ Sampling is not the only game in town
— Many other data reduction techniques by many names

¢ Dimensionality reduction methods

— PCA, SVD, eigenvalue/eigenvector decompositions

— Costly and slow to perform on big data

0 “Sketching” techniques for streams of data T
— Hash based summaries via random projections

— Complex to understand and limited in function

0 Other transform/dictionary based summarization methods

— Wavelets, Fourier Transform, DCT, Histograms
— Not incrementally updatable, high overhead



Sampling for Big Data

Health Warning: contains probabilities

¢ Some probability basics are assumed
— Concepts of probability, expectation, variance of random variables
— Allude to concentration of measure (Exponential/Chernoff bounds)
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Sampling for Big Data

Outline

¢ Motivating application: sampling in large ISP networks
¢ Basics of sampling: concepts and estimation
¢ Stream sampling: uniform and weighted case

— Variations: Concise sampling, sample and hold, sketch guided
¢ Advanced stream sampling: sampling as cost optimization
— VarOpt, priority, structure aware, and stable sampling
¢ *Graph sampling
— Node, edge and subgraph sampling
¢ Conclusion and future directions
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Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Sampling
< >
Resource Constraints Query Requirements
(Bandwidth, Storage, CPU) (Ad Hoc, Accuracy,

Aggregates, Speed)



Sampling for Big Data

Motivating Application: ISP Data

¢ Will motivate many results with application to ISPs

¢ Many reasons to use such examples:
— Expertise: tutors from telecoms world
— Demand: many sampling methods developed in response to ISP needs
— Practice: sampling widely used in ISP monitoring, built into routers
— Prescience: ISPs were first to hit many “big data” problems
— Variety: many different places where sampling is needed

O First, a crash-course on ISP networks...
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Sampling for Big Data

Structure of Large ISP Networks

Peering with other ISPs
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Access Networks:
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Sampling for Big Data

Measuring the ISP Network: Data
Sources
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Sampling for Big Data
Why Summarize (ISP) Big Data?

¢ When transmission bandwidth for measurements is limited
— Not such a big issue in ISPs with in-band collection
0 Typically raw accumulation is not feasible (even for nation states)
— High rate streaming data
— Maintain historical summaries for baselining, time series analysis
¢ To facilitate fast queries
— When infeasible to run exploratory queries over full data
¢ As part of hierarchical query infrastructure:
— Maintain full data over limited duration window
— Drill down into full data through one or more layers of summarization

Sampling has been proved to be a flexible method to accomplish this
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Data Scale:
Summarization and Sampling
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Traffic Measurement in the ISP
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Sampling for Big Data

Massive Dataset: Flow Records
» time
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flow 1 flow 2 flow 3 flow 4

O IP Flow: set of packets with common key observed close in time
O Flow Key: IP src/dst address, TCP/UDP ports, ToS, ... [64 to 104+ bits]
¢ Flow Records:
— Protocol level summaries of flows, compiled and exported by routers

— Flow key, packet and byte counts, first/last packet time, some router state
— Realizations: Cisco Netflow, IETF Standards

¢ Scale: 100’s TeraBytes of flow records daily are generated in a large ISP
0 Used to manage network over range of timescales:
— Capacity planning (months),...., detecting network attacks (seconds)

0 Analysis tasks
— Easy: timeseries of predetermined aggregates (e.g. address prefixes)
— Hard: fast queries over exploratory selectors, history, communications subgraphs
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Flows, Flow Records and Sampling

¢ Two types of sampling used in practice for internet traffic:
1. Sampling packet stream in router prior to forming flow records
O  Limits the rate of lookups of packet key in flow cache
O Realized as Packet Sampled NetFlow (more later...)
1. Downstream sampling of flow records in collection infrastructure
O  Limits transmission bandwidth, storage requirements
O Realized in ISP measurement collection infrastructure (more later...)
¢ Two cases illustrative of general property
— Different underlying distributions require different sample designs
—  Statistical optimality sometimes limited by implementation constraints
O  Availability of router storage, processing cycles



Sampling for Big Data

Abstraction: Keyed Data Streams

¢ Data Model: objects are keyed weights
— Objects (x,k): Weight x; key k
0 Example 1: objects = packets, x = bytes, k = key (source/destination)
0 Example 2: objects = flows, x = packets or bytes, k = key
0 Example 3: objects = account updates, x = credit/debit, k = account ID
¢ Stream of keyed weights, {(x, k):i=1,2,...,n}
¢ Generic query: subset sums
— X(S)=2Z,_sx forSc{1,2,...,n}i.e. total weight of index subset S
— Typically S = S(K) = {i: k; € K} : objects with keys in K
0 Example 1, 2: X(S(K)) = total bytes to given IP dest address / UDP port
0 Example 3: X(S(K)) = total balance change over set of accounts

¢ Aim: Compute fixed size summary of stream that can be used to
estimate arbitrary subset sums with known error bounds



Sampling for Big Data

Inclusion Sampling and Estimation

¢ Horvitz-Thompson Estimation:
— Object of size x, sampled with probability p;
— Unbiased estimate x’,= x; / p; (if sampled), O if not sampled: E[x",] = x,
¢ Linearity:
— Estimate of subset sum = sum of matching estimates
— Subset sum X(S)= X, _s x;is estimated by X'(S) = X, _¢ X/,
¢ Accuracy:
— Exponential Bounds: Pr[ | X'(S) - X(S)| > 6X(S)] < exp[-g(&)X(S)]
— Confidence intervals: X(S) € [X(g) , X*(g)] with probability 1 - €
¢ Futureproof:
— Don’t need to know queries at time of sampling
0 “Where/where did that suspicious UDP port first become so active?”
O “Which is the most active IP address within than anomalous subnet?”
— Retrospective estimate: subset sum over relevant keyset
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Independent Stream Sampling

¢ Bernoulli Sampling

— |ID sampling of objects with some probability p

— Sampled weight x has HT estimate x/p
¢ Poisson Sampling

— Weight x. sampled with probability p, ; HT estimate x; / p;
¢ When to use Poisson vs. Bernoulli sampling?

— Elephants and mice: Poisson allows probability to depend on weight...

¢ What is best choice of probabilities for given stream {x;} ?
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Bernoulli Sampling

¢ The easiest possible case of sampling: all weights are 1
— N objects, and want to sample k from them uniformly
— Each possible subset of k should be equally likely
¢ Uniformly sample an index from N (without replacement) k times
— Some subtleties: truly random numbers from [1...N] on a computer?
— Assume that random number generators are good enough
¢ Common trick in DB: assign a random number to each item and sort
— Costly if N is very big, but so is random access
0 Interesting problem: take a single linear scan of data to draw sample
— Streaming model of computation: see each element once
— Application: IP flow sampling, too many (for us) to store
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Reservoir Sampling

“Reservoir sampling” described by [Knuth 69, 81]; enhancements [Vitter 85]
¢ Fixed size k uniform sample from arbitrary size N stream in one pass

— No need to know stream size in advance
— Include first k items w.p. 1
— Include item n > k with probability p(n) = k/n, n >k
O Pick j uniformly from {1,2,...,n}
O If j <k, swap item n into location j in reservoir, discard replaced item
¢ Neat proof shows the uniformity of the sampling method:

— Let S, = sample set after n arrivals

m (<n) New item: selection probability

L [ T 1T 1 I
L1 |-| L1 11 Prob[n € S,] =p, :=k/n

k=7 "
Previously sampled item: induction

meS,  Wp.p,1= MmeS, wp.p,.*(1-p,/k) =p,



Sampling for Big Data

Reservoir Sampling: Skip Counti'n_g

¢ Simple approach: check each item in turn —=
— 0O(1) per item:
— Fine if computation time < interarrival time
— Otherwise build up computation backlog O(N)
¢ Better: “skip counting”
— Find random index m(n) of next selection > n
— Distribution: Prob[m(n)<m]=1-(1-p,.1)*(1-p,.n)*...*(1-p,)
0 Expected number of selections from stream is
K+ Zicmen Pm = K+ Ziemen k/m = O(k (1 +In (N/k) ))
¢ Vitter’85 provided algorithm with this average running time
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Reservoir Sampling via Order Sampling

¢ Order sampling a.k.a. bottom-k sample, min-hashing
¢ Uniform sampling of stream into reservoir of size k
¢ Each arrival n: generate one-time random value r,, € U[0,1]

— r, also known as hash, rank, tag...
¢ Store k items with the smallest random tags

@ & & e e O

0.391 0.908 0.291 0.555 0.619 0.273

U

m Each item has same chance of least tag, so uniform

m Fast to implement via priority queue
m Can run on multiple input streams separately, then merge
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Handling Weights

¢ So far: uniform sampling from a stream using a reservoir

¢ Extend to non-uniform sampling from weighted streams
— Easy case: k=1
— Sampling probability p(n) = x,,/W,, where W, =X._" x,
¢ k>1is harder
— Can have elements with large weight: would be sampled with prob 17?
¢ Number of different weighted order-sampling schemes proposed to
realize desired distributional objectives
— Rankr,=f(u,, x,) for some functionfandu, € U[0,1]
— k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
— [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006]
— Order PPS Sampling [Ohlsson 1990, Rosen 1997]
— Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]
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Weighted random sampling

0 Weighted random sampling [Efraimidis Spirakis 06] generalizes min-wise
— For each item draw r, uniformly at random in range [0,1]
— Compute the ‘tag’ of an item as r,, (/%)
— Keep the items with the k smallest tags
— Can prove the correctness of the exponential sampling distribution

¢ Can also make efficient via skip counting ideas




Sampling for Big Data
Priority Sampling

0 Each item x; given priority z, = x, / r, with r,, uniform random in (0,1]
¢ Maintain reservoir of k+1 items (x; , z, ) of highest priority

¢ Estimation
— Let z* = (k+1)st highest priority
— Top-k priority items: weight estimate x’, = max{ x; , z* }
— All other items: weight estimate zero
¢ Statistics and bounds
— X’ unbiased; zero covariance: Cov[x’; x’; | = 0 for i#]

— Relative variance for any subset sum < 1/(k-1) [Szegedy, 2000]
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Priority Sampling in Databases

¢ One Time Sample Preparation
— Compute priorities of all items, sort in decreasing priority order
0 No discard
¢ Sample and Estimate
— Estimate any subset sum X(S) = 2. _c x; by X'(S) = Z,_; X/, forsome S’ < S
— Method: select items in decreasing priority order
¢ Two variants: bounded variance or complexity
1. S’ =first kitems from S: relative variance bounded < 1/(k-1)
O X', =max{x,z*}where z* = (k+1)st highest priority in S
1. S’ =items from Sin first k: execution time O(k)
0 x',=max{x , z* } where z* = (k+1)st highest priority
[Alon et. al., 2005]
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Making Stream Samples Smarter

0 Observation: we see the whole stream, even if we can’t store it
— Can keep more information about sampled items if repeated
— Simple information: if item sampled, count all repeats
0 Counting Samples [Gibbons & Mattias 98]
— Sample new items with fixed probability p, count repeats as c;
— Unbiased estimate of total count: 1/p +(c,—1)
0 Sample and Hold [Estan & Varghese 02]: generalize to weighted keys
— New key with weight b sampled with probability 1 - (1-p)®°
¢ Lower variance compared with independent sampling
— But sample size will grow as pn
¢ Adaptive sample and hold: reduce p when needed
— “Sticky sampling”: geometric decreases in p [Manku, Motwani 02]
— Much subsequent work tuning decrease in p to maintain sample size
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Sketch Guided Sampling

¢ Go further: avoid sampling the heavy keys as much
— Uniform sampling will pick from the heavy keys again and again
0 ldea: use an oracle to tell when a key is heavy [Kumar Xu 06]
— Adjust sampling probability accordingly
¢ Can use a “sketch” data structure to play the role of oracle
— Like a hash table with collisions, tracks approximate frequencies
— E.g. (Counting) Bloom Filters, Count-Min Sketch
0 Track probability with which key is sampled, use HT estimators

— Set probability of sampling key with (estimated) weight w as
1/(1 + ew) for parameter € : decreases as w increases

— Decreasing € improves accuracy, increases sample size
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Challenges for Smart Stream Sampling

¢ Current router constraints
— Flow tables maintained in fast expensive SRAM
0 To support per packet key lookup at line rate

0 Implementation requirements

— Sample and Hold: still need per packet lookup

— Sampled NetFlow: (uniform) sampling reduces lookup rate
O Easier to implement despite inferior statistical properties

¢ Long development times to realize new sampling algorithms
¢ Similar concerns affect sampling in other applications

— Processing large amounts of data needs awareness of hardware
— Uniform sampling means no coordination needed in distributed setting
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Future for Smarter Stream Sampling

0 Software Defined Networking
— Current: proprietary software running on special vendor equipment
— Future: open software and protocols on commodity hardware

0 Potentially offers flexibility in traffic measurement
— Allocate system resources to measurement tasks as needed
— Dynamic reconfiguration, fine grained tuning of sampling
— Stateful packet inspection and sampling for network security
0 Technical challenges:
— High rate packet processing in software

— Transparent support from commodity hardware
— OpenSketch: [Yu, Jose, Miao, 2013]

¢ Same issues in other applications: use of commodity programmable HW
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Stream Sampling:
Sampling as Cost Optimization
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Matching Data to Sampling Analysis

¢ Generic problem 1: Counting objects: weight x, = 1
Bernoulli (uniform) sampling with probability p works fine
— Estimated subset count X’(S) = #{samples in S} / p \_/
— Relative Variance (X'(S)) = (1/p -1)/X(S)
O given p, get any desired accuracy for large enough S

¢ Generic problem 2: x; in Pareto distribution, a.k.a. 80-20 law
— Small proportion of objects possess a large proportion of total weight
0 How to best to sample objects to accurately estimate weight?
— Uniform sampling?

v .4
O likely to omit heavy objects = big hit on accuracy QA e
0 making selection set S large doesn’t help % L
— Select m largest objects ? a B

O biased & smaller objects systematically ignored
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Heavy Tails in the Internet and
Beyond

O Files sizes in storage
¢ Bytes and packets per network flow
¢ Degree distributions in web graph, social networks

0
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Non-Uniform Sampling

0 Extensive literature: see book by [Tille, “Sampling Algorithms”, 2006]
¢ Predates “Big Data”

— Focus on statistical properties, not so much computational
¢ IPPS: Inclusion Probability Proportional to Size
— Variance Optimal for HT Estimation

— Sampling probabilities for multivariate version: [Chao 1982, Tille 1996]
— Efficient stream sampling algorithm: [Cohen et. al. 2009]
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Costs of Non-Uniform Sampling

¢ Independent sampling from n objects with weights {x,,... ,x,.}
¢ Goal: find the “best” sampling probabilities {p4, ... ,p,}
¢ Horvitz-Thompson: unbiased estimation of each x; by

| { x./p, if weight i selected
X' =

0 otherwise

¢ Two costs to balance:
1. Estimation Variance: Var(x')=x?(1/p, — 1)
2. Expected Sample Size: 2.p,
0 Minimize Linear Combination Cost: 2. (x.2(1/p,—1) + z2p))
— z expresses relative importance of small sample vs. small variance
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Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size
¢ Minimize Cost X, (x2 (1/p,— 1) + z2 p,) subjectto1>p, 20
¢ Solution: p; = p,(x;) = min{1, x, /z}
— small objects (x; < z) selected with probability proportional to size
— large objects (x; > z) selected with probability 1
— Call z the “sampling threshold”
— Unbiased estimator x,/p, =max{x; , z}

¢ Perhaps reminiscent of importance
sampling, but not the same:

— make no assumptions concerning
distribution of the x !
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Error Estimates and Bounds

¢ Variance Based:
— HT sampling variance for single object of weight x;
0 Var(x’;) =x2(1/p; —1) =x%(1/min{l,x,/z} —1) <z,
— Subset sum X(S)= X, _s x;is estimated by X'(S) = X, _¢ X/,
o Var(X'(S)) £z X(S)
¢ Exponential Bounds
— E.g. Prob[X'(S) =0] <exp(- X(S)/ z)
¢ Bounds are simple and powerful
— depend only on subset sum X(S), not individual constituents
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Sampled IP Traffic Measurements

¢ Packet Sampled NetFlow
— Sample packet stream in router to limit rate of key lookup: uniform 1/N
— Aggregate sampled packets into flow records by key

0 Model: packet stream of (key, bytesize) pairs { (b, ki) }

0 Packet sampled flow record (b,k) where b =3 {b,: i sampled A k; = k}
— HT estimate b/N of total bytes in flow

¢ Downstream sampling of flow records in measurement infrastructure
— IPPS sampling, probability min{1, b/(Nz)}

¢ Chained variance bound for any subset sum X of flows
— Var(X’) £(z + Nb,.,) X where b, ., = maximum packet byte size
— Regardless of how packets are distributed amongst flows

[Duffield, Lund, Thorup, IEEE TolT, 2004]
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Estimation Accuracy in Practice

¢ Estimate any subset sum comprising at least some fraction f of weight
O Suppose: sample size m

0 Analysis: typical estimation error € (relative standard deviation) obeys

100.00% m = 2**16 samples
s (0]

E S 1 — W 10.00% \~
() \
f m P 100 \‘\
0.10%
Estimate fraction f=0.1% 0.0001 0.001  0.01 0.1 1
with typical relative error fraction f
12%:

¢ 2*16 = same storage needed for aggregates over 16 bit address prefixes

0 But sampling gives more flexibility to estimate traffic within aggregates
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Heavy Hitters:
Exact vs. Aggregate vs. Sampled

¢ Sampling does not tell you where the interesting features are
— But does speed up the ability to find them with existing tools

¢ Example: Heavy Hitter Detection
— Setting: Flow records reporting 10GB/s traffic stream
— Aim: find Heavy Hitters = IP prefixes comprising 2 0.1% of traffic
— Response time needed: 5 minute

¢ Compare:
— Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
— 64k aggregates over 16 bit prefixes: no deeper drill-down possible
— Sampled: 64k flow records: any aggregate > 0.1% accurate to 10%

Exact Aggregate Sampled
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Cost Optimization for Sampling

Several different approaches optimize for different objectives:
1. Fixed Sample Size IPPS Sample
— Variance Optimal sampling: minimal variance unbiased estimation
1. Structure Aware Sampling
— Improve estimation accuracy for subnet queries using topological cost
1. Fair Sampling
— Adaptively balance sampling budget over subpopulations of flows
— Uniform estimation accuracy regardless of subpopulation size

1. Stable Sampling

— Increase stability of sample set by imposing cost on changes
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IPPS Stream Reservoir Sampling

¢ Each arriving item:
— Provisionally include item in reservoir
— If m+1 items, discard 1 item randomly

0 Calculate threshold z to sample m items on average: z solves 2 p,(x;) = m

O Discard item i with probability g, =1 — p,(x;)

0 Adjust m surviving x; with Horvitz-Thompson x’; = x,/ p,= max{x;,z}

¢ Efficient Implementation:

— Computational cost O(log m ) per item, amortized cost O(log log m)

Example:
m=9

)
Lmindt, x, /2}
4

[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]



Sampling for Big Data

Structure (Un)Aware Sampling

¢ Sampling is oblivious to structure in keys (IP address hierarchy)
— Estimation disperses the weight of discarded items to surviving samples

¢ Queries structure aware: subset sums over related keys (IP subnets)
— Accuracy on LHS is decreased by discarding weight on RHS
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Localizing Weight Redistribution

0 Initial weight set {x; : ieS} for some S Q

— E.g. Q = possible IP addresses, S =observed IP addresses

0 Attribute “range cost” C({x; : ieR}) for each weight subset RcS

— Possible factors for Range Cost:
O Sampling variance

— Heuristics: R* = Nearest Neighbor {x;, x;} of minimal x;x

O Topology e.g. height of lowest common ancestor/\

No change outside
subtree below
closest ancestor

e

qdigest ——
varopt ——
SNN-sum --#-- |
. SNN-lin —&—

. -@_§N-prod

-,

~
e

¢ Sample k items from S: 01
— Progressively remove one item from 001}
subset with minimal range cost: il 8
— While(|S| > k) :
0.0001
O Find R*<S of minimal range cost. Jc i
—
0 Remove a weight from R* w/ VarOpt [
1e-06
[Cohen, Cormode, Duffield; PVLDB 2011] i

1000

sample size

10000

Order of magnitude reduction in
average subnet error vs. VarOpt
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Fair Sampling Across Subpopulations

¢ Analysis queries often focus on specific subpopulations

— E.g. networking: different customers, user applications, network paths
¢ Wide variation in subpopulation size

— 5 orders of magnitude variation in traffic on interfaces of access router
¢ If uniform sampling across subpopulations:

— Poor estimation accuracy on subset sums within small subpopulations

: A Color = subpopulation

- - . . .

A A , A =interesting items

|

- - — occurrence proportional to subpopulation size
m Sample

: Uniform Sampling across subpopulations:

: - — Difficult to track proportion of interesting

|

items within small subpopulations:
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Fair Sampling Across Subpopulations

¢ Minimize relative variance by sharing budget m over subpopulations
— Total n objects in subpopulations n;,...,ny with X;n.=n
— Allocate budget m; to each subpopulation n; with Zm=m
¢ Minimize average population relative variance R = const. ~.1/m.
¢ Theorem:
— R minimized when {m;} are Max-Min Fair share of m under demands {n}
¢ Streaming
— Problem: don’t know subpopulation sizes {n;} in advance
¢ Solution: progressive fair sharing as reservoir sample

— Provisionally include each arrival
— Discard 1 item as VarOpt sample from any maximal subpopulation

0 Theorem [Duffield; Sigmetrics 2012]:

— Max-Min Fair at all times; equality in distribution with VarOpt samples {m, from n;}
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Stable Sampling

¢ Setting: Sampling a population over successive periods
¢ Sample independently at each time period?

— Cost associated with sample churn
— Time series analysis of set of relatively stable keys
¢ Find sampling probabilities through cost minimization
— Minimize Cost = Estimation Variance + z * E[#Churn]
¢ Size m sample with maximal expected churn D
— weights {x;}, previous sampling probabilities {p;}
— find new sampling probabilities {g;} to minimize cost of taking m samples
— Minimize Z.x2,/ g, subjectto 129,20, %2,g,=mand %, | p,—q,| £ D
[Cohen, Cormode, Duffield, Lund 13]
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Summary of Part 1

¢ Sampling as a powerful, general summarization technique
¢ Unbiased estimation via Horvitz-Thompson estimators

¢ Sampling from streams of data
— Uniform sampling: reservoir sampling
— Weighted generalizations: sample and hold, counting samples
¢ Advances in stream sampling
— The cost principle for sample design, and IPPS methods
— Threshold, priority and VarOpt sampling
— Extending the cost principle:
O structure aware, fair sampling, stable sampling, sketch guided
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Current Directions in Sampling
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Role and Challenges for Sampling

¢ Matching
— Sampling mediates between data characteristics and analysis needs
— Example: sample from power-law distribution of bytes per flow...
O but also make accurate estimates from samples
0 simple uniform sampling misses the large flows
¢ Balance

— Weighted sampling across key-functions: e.g. customers, network paths,
geolocations

0 cover small customers, not just large
0o cover all network elements, not just highly utilized
¢ Consistency
— Sample all views of same event, flow, customer, network element
O across different datasets, at different times
0O independent sampling = small intersection of views
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Sampling and Big Data Systems

¢ Sampling is still a useful tool in cluster computing
— Reduce the latency of experimental analysis and algorithm design

¢ Sampling as an operator is easy to implement in MapReduce

— For uniform or weighted sampling of tuples

¢ Graph computations are a core motivator of big data
— PageRank as a canonical big computation
— Graph-specific systems emerging (Pregel, LFgraph, Graphlab, Giraph...)
— But... sampling primitives not yet prevalent in evolving graph systems
¢ When to do the sampling?
— Option 1: Sample as an initial step in the computation
0 Fold sample into the initial “Map” step
— Option 2: Sample to create a stored sample graph before computation
0 Allows more complex sampling, e.g. random walk sampling
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Sampling + KDD

¢ The interplay between sampling and data mining is not well understood
— Need an understanding of how ML/DM algorithms are affected by sampling
— E.g. how big a sample is needed to build an accurate classifier?
— E.g. what sampling strategy optimizes cluster quality

O Expect results to be method specific
— l.e. “IPPS + k-means” rather than “sample + cluster’

)
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Sampling and Privacy

¢ Current focus on privacy-preserving data mining
— Deliver promise of big data without sacrificing privacy?
— Opportunity for sampling to be part of the solution

¢ Naive sampling provides “privacy in expectation”
— Your data remains private if you aren’t included in the sample...
¢ Intuition: uncertainty introduced by sampling contributes to privacy
— This intuition can be formalized with different privacy models
¢ Sampling can be analyzed in the context of differential privacy
— Sampling alone does not provide differential privacy
— But applying a DP method to sampled data does guarantee privacy
— A tradeoff between sampling rate and privacy parameters
0 Sometimes, lower sampling rate improves overall accuracy
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Advert: Now Hiring...

O Nick Duffield, Texas A&M
— Phds in big data, graph sampling
— Nick.Duffield@gmail.com

¢ Graham Cormode, University of Warwick UK T —

— Phds in big data summarization
(graphs and matrices, funded by MSR)

— Postdocs in privacy and data modeling
(funded by EC, AT&T)

— G.Cormode@warwick.ac.uk
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That’s alll

Thank you!



