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Sampling for Big Data

Big Data

◊ “Big” data arises in many forms:
– Physical Measurements: from science (physics, astronomy)
– Medical data: genetic sequences, detailed time series
– Activity data: GPS location, social network activity
– Business data: customer behavior tracking at fine detail

◊ Common themes: 
– Data is large, and growing
– There are important patterns 

and trends in the data
– We don’t fully know where to look

or how to find them
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Why Reduce?

◊ Although “big” data is about more than just the volume…
…most big data is big!

◊ It is not always possible to store the data in full
– Many applications (telecoms, ISPs, search engines) can’t keep everything

◊ It is inconvenient to work with data in full
– Just because we can, doesn’t mean we should

◊ It is faster to work with a compact summary
– Better to explore data on a laptop than a cluster
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Why Sample?

◊ Sampling has an intuitive semantics
– We obtain a smaller data set with the same structure

◊ Estimating on a  sample is often straightforward
– Run the analysis on the sample that you would on the full data
– Some rescaling/reweighting may be necessary

◊ Sampling is general and agnostic to the analysis to be done
– Other summary methods only work for certain computations
– Though sampling can be tuned to optimize some criteria

◊ Sampling is (usually) easy to understand
– So prevalent that we have an intuition about sampling
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Alternatives to Sampling

◊ Sampling is not the only game in town
– Many other data reduction techniques by many names

◊ Dimensionality reduction methods
– PCA, SVD, eigenvalue/eigenvector decompositions
– Costly and slow to perform on big data

◊ “Sketching” techniques for streams of data
– Hash based summaries via random projections
– Complex to understand and limited in function

◊ Other transform/dictionary based summarization methods
– Wavelets, Fourier Transform, DCT, Histograms
– Not incrementally updatable, high overhead
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Health Warning: contains probabilities

◊ Some probability basics are assumed
– Concepts of probability, expectation, variance of random variables
– Allude to concentration of measure (Exponential/Chernoff bounds)
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Outline

◊ Motivating application: sampling in large ISP networks
◊ Basics of sampling: concepts and estimation
◊ Stream sampling: uniform and weighted case

– Variations: Concise sampling, sample and hold, sketch guided
◊ Advanced stream sampling: sampling as cost optimization

– VarOpt, priority, structure aware, and stable sampling
◊ *Graph sampling

– Node, edge and subgraph sampling
◊ Conclusion and future directions
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Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Query Requirements
(Ad Hoc, Accuracy, 
Aggregates, Speed)

Resource Constraints
(Bandwidth, Storage, CPU)
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Motivating Application: ISP Data

◊ Will motivate many results with application to ISPs
◊ Many reasons to use such examples:

– Expertise: tutors from telecoms world
– Demand: many sampling methods developed in response to ISP needs
– Practice: sampling widely used in ISP monitoring, built into routers
– Prescience: ISPs were first to hit many “big data” problems
– Variety: many different places where sampling is needed

◊ First, a crash-course on ISP networks…
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Structure of Large ISP Networks

Peering with other ISPs

Access Networks: 
Wireless, DSL, IPTV

City-level
Router Centers

Backbone  Links

Downstream ISP and 
business customers

Service and 
Datacenters

Network Management 
& Administration
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Measuring the ISP Network: Data 
Sources

Peering

Access
Router Centers

Backbone

Business

DatacentersManagement

Link Traffic Rates
Aggregated per router interface

Traffic Matrices
Flow records from routers

Loss & Latency
Active probing

Loss & Latency 
Roundtrip to edge

Protocol Monitoring:
Routers, Wireless

Status Reports:
Device failures and transitions

Customer Care Logs
Reactive indicators of 
network performance 
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Why Summarize (ISP) Big Data?

◊ When transmission bandwidth for measurements is limited
– Not such a big issue in ISPs with in-band collection

◊ Typically raw accumulation is not feasible (even for nation states)
– High rate streaming data
– Maintain historical summaries for baselining, time series analysis

◊ To facilitate fast queries
– When infeasible to run exploratory queries over full data

◊ As part of hierarchical query infrastructure:
– Maintain full data over limited duration window
– Drill down into full data through one or more layers of summarization

Sampling has been proved to be a flexible method to accomplish this
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Data Scale:
Summarization and Sampling
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Traffic Measurement in the ISP 
Network

Access
Router Centers

Backbone

Business

DatacentersManagement

Traffic Matrices
Flow records from routers
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Massive Dataset: Flow Records

◊ IP Flow: set of packets with common key observed close in time

◊ Flow Key: IP src/dst address, TCP/UDP ports, ToS,… [64 to 104+ bits]

◊ Flow Records: 
– Protocol level summaries of flows, compiled and exported by routers
– Flow key, packet and byte counts, first/last packet time, some router state
– Realizations: Cisco Netflow, IETF Standards

◊ Scale: 100’s TeraBytes of flow records daily are generated in a large ISP
◊ Used to manage network over range of timescales: 

– Capacity planning (months),…., detecting network attacks (seconds)

◊ Analysis tasks
– Easy: timeseries of predetermined aggregates (e.g. address prefixes)
– Hard: fast queries over exploratory selectors, history, communications subgraphs

flow 1 flow 2 flow 3 flow 4

time
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Flows, Flow Records and Sampling

◊ Two types of sampling used in practice for internet traffic:
1. Sampling packet stream in router prior to forming flow records

□ Limits the rate of lookups of packet key in flow cache
□ Realized as Packet Sampled NetFlow (more later…)

1. Downstream sampling of flow records in collection infrastructure
□ Limits transmission bandwidth, storage requirements
□ Realized in ISP measurement collection infrastructure (more later…)

◊ Two cases illustrative of general property
– Different underlying distributions require different sample designs
– Statistical optimality sometimes limited by implementation constraints 

□ Availability of router storage, processing cycles
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Abstraction: Keyed Data Streams

◊ Data Model: objects are keyed weights
– Objects (x,k): Weight x; key k

□ Example 1: objects = packets, x = bytes, k = key (source/destination)
□ Example 2: objects = flows, x = packets or bytes, k = key
□ Example 3: objects = account updates, x = credit/debit, k = account ID

◊ Stream of keyed weights, {(xi , ki): i = 1,2,…,n} 
◊ Generic query: subset sums

– X(S) = ΣiS xi
  for S  {1,2,…,n} i.e. total weight of index subset S

– Typically S = S(K) = {i: ki  K} : objects with keys in K
□ Example 1, 2: X(S(K)) = total bytes to given IP dest address / UDP port
□ Example 3: X(S(K)) = total balance change over set of accounts

◊ Aim: Compute fixed size summary of stream that can be used to 
estimate arbitrary subset sums with known error bounds
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Inclusion Sampling and Estimation

◊ Horvitz-Thompson Estimation:
– Object of size xi sampled with probability pi

– Unbiased estimate x’i = xi / pi (if sampled), 0 if not sampled: E[x’i] = xi

◊ Linearity: 
– Estimate of subset sum = sum of matching estimates
– Subset sum X(S)= iS xi

 is estimated by X’(S) = iS x’i
 

◊ Accuracy:
– Exponential Bounds: Pr[ |X’(S) - X(S)| > δX(S)] ≤ exp[-g(δ)X(S)]
– Confidence intervals: X(S)  [X-() , X+()] with probability 1 - 

◊ Futureproof:
– Don’t need to know queries at time of sampling

□ “Where/where did that suspicious UDP port first become so active?”
□ “Which is the most active IP address within than anomalous subnet?”

– Retrospective estimate: subset sum over relevant keyset
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Independent Stream Sampling 

◊ Bernoulli Sampling
– IID sampling of objects with some probability p
– Sampled weight x has HT estimate x/p

◊ Poisson Sampling
– Weight xi sampled with probability pi ; HT estimate xi / pi 

◊ When to use Poisson vs. Bernoulli sampling?
– Elephants and mice: Poisson allows probability to depend on weight…

◊ What is best choice of probabilities for given stream {xi} ?
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Bernoulli Sampling

◊ The easiest possible case of sampling: all weights are 1
– N objects, and want to sample k from them uniformly
– Each possible subset of k should be equally likely

◊ Uniformly sample an index from N (without replacement) k times
– Some subtleties: truly random numbers from [1…N] on a computer?
– Assume that random number generators are good enough

◊ Common trick in DB: assign a random number to each item and sort
– Costly if N is very big, but so is random access

◊ Interesting problem: take a single linear scan of data to draw sample
– Streaming model of computation: see each element once
– Application: IP flow sampling, too many (for us) to store
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Reservoir Sampling

“Reservoir sampling” described by [Knuth 69, 81]; enhancements [Vitter 85]
◊ Fixed size k uniform sample from arbitrary size N stream in one pass

– No need to know stream size in advance
– Include first k items w.p. 1
– Include item n > k  with probability p(n) = k/n, n > k

□ Pick j uniformly from {1,2,…,n}
□ If j ≤ k, swap item n into location j in reservoir, discard replaced item

◊ Neat proof shows the uniformity of the sampling method: 
– Let Sn = sample set after n arrivals

k=7 n

m (< n)

Previously sampled item: induction
m  Sn-1 w.p. pn-1   m  Sn w.p. pn-1 * (1 – pn / k) = pn

New item: selection probability
Prob[n  Sn ] = pn  := k/n
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Reservoir Sampling: Skip Counting

◊ Simple approach: check each item in turn
– O(1) per item: 
– Fine if computation time <  interarrival time
– Otherwise build up computation backlog O(N) 

◊ Better: “skip counting”
– Find random index m(n) of next selection > n
– Distribution:  Prob[m(n) ≤ m] = 1 - (1-pn+1)*(1-pn+2)*…*(1-pm)

◊ Expected number of selections from stream is
      k + Σk<m≤N pm = k + Σk<m≤N k/m = O(k ( 1 + ln (N/k) )) 

◊ Vitter’85 provided algorithm with this average running time
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Reservoir Sampling via Order Sampling

◊ Order sampling a.k.a. bottom-k sample, min-hashing
◊ Uniform sampling of stream into reservoir of size k
◊ Each arrival n: generate one-time random value rn  U[0,1]

– rn also known as hash, rank, tag…
◊ Store k items with the smallest random tags

0.391 0.908 0.291 0.555 0.619 0.273

 Each item has same chance of least tag, so uniform
 Fast to implement via priority queue
 Can run on multiple input streams separately, then merge
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Handling Weights

◊ So far: uniform sampling from a stream using a reservoir
◊ Extend to non-uniform sampling from weighted streams

– Easy case: k=1
– Sampling probability p(n) = xn/Wn where Wn = i=1

n xi

◊ k>1 is harder
– Can have elements with large weight: would be sampled with prob 1? 

◊ Number of different weighted order-sampling schemes proposed to 
realize desired distributional objectives
– Rank rn = f(un,  xn ) for some function f and un  U[0,1] 

– k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
– [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006] 
– Order PPS Sampling [Ohlsson 1990, Rosen 1997] 
– Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]
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Weighted random sampling

◊ Weighted random sampling [Efraimidis Spirakis 06] generalizes min-wise 
– For each item draw rn uniformly at random in range [0,1]
– Compute the ‘tag’ of an item as rn (1/xn)

– Keep the items with the k smallest tags
– Can prove the correctness of the exponential sampling distribution

◊ Can also make efficient via skip counting ideas
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Priority Sampling

◊ Each item xi  given priority zi = xi / ri with rn uniform random in (0,1]
◊ Maintain reservoir of k+1 items (xi , zi ) of highest priority
◊ Estimation 

– Let z* = (k+1)st highest priority
– Top-k priority items: weight estimate x’I = max{ xi , z* }
– All other items: weight estimate zero

◊ Statistics and bounds
– x’I unbiased; zero covariance: Cov[x’i , x’j ] = 0 for i≠j

– Relative variance for any subset sum ≤ 1/(k-1) [Szegedy, 2006]
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Priority Sampling in Databases

◊ One Time Sample Preparation
– Compute priorities of all items, sort in decreasing priority order

□ No discard
◊ Sample and Estimate

– Estimate any subset sum X(S) = iS xi
 by X’(S) = iS x’I

  for some S’  S
– Method: select items in decreasing priority order

◊ Two variants: bounded variance or complexity 
1. S’ = first k items from S: relative variance bounded ≤ 1/(k-1)

□ x’I = max{ xi , z* } where z* = (k+1)st highest priority in S
1. S’ = items from S in first k: execution time O(k)

□ x’I = max{ xi , z* } where z* = (k+1)st highest priority
[Alon et. al., 2005]
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Making Stream Samples Smarter

◊ Observation: we see the whole stream, even if we can’t store it
– Can keep more information about sampled items if repeated
– Simple information: if item sampled, count all repeats

◊ Counting Samples [Gibbons & Mattias 98]
– Sample new items with fixed probability p, count repeats as ci

– Unbiased estimate of total count:  1/p + (ci – 1) 
◊ Sample and Hold [Estan & Varghese 02]: generalize to weighted keys

– New key with weight b sampled with probability 1 - (1-p)b

◊ Lower variance compared with independent sampling
– But sample size will grow as pn

◊ Adaptive sample and hold: reduce p when needed
– “Sticky sampling”: geometric decreases in p [Manku, Motwani 02]
– Much subsequent work tuning decrease in p to maintain sample size



Sampling for Big Data

Sketch Guided Sampling

◊ Go further: avoid sampling the heavy keys as much
– Uniform sampling will pick from the heavy keys again and again

◊ Idea: use an oracle to tell when a key is heavy [Kumar Xu 06] 
– Adjust sampling probability accordingly

◊ Can use a “sketch” data structure to play the role of oracle
– Like a hash table with collisions, tracks approximate frequencies
– E.g. (Counting) Bloom Filters, Count-Min Sketch

◊ Track probability with which key is sampled, use HT estimators
– Set probability of sampling key with (estimated) weight w as 

1/(1 + w) for parameter decreases as w increases
– Decreasing  improves accuracy, increases sample size
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Challenges for Smart Stream Sampling

◊ Current router constraints
– Flow tables maintained in fast expensive SRAM

□ To support per packet key lookup at line rate

◊ Implementation requirements
– Sample and Hold: still need per packet lookup
– Sampled NetFlow: (uniform) sampling reduces lookup rate

□ Easier to implement despite inferior statistical properties

◊ Long development times to realize new sampling algorithms
◊ Similar concerns affect sampling in other applications

– Processing large amounts of data needs awareness of hardware
– Uniform sampling means no coordination needed in distributed setting
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Future for Smarter Stream Sampling

◊ Software Defined Networking
– Current: proprietary software running on special  vendor equipment
– Future: open software and protocols on commodity hardware

◊ Potentially offers flexibility in traffic measurement
– Allocate system resources to measurement tasks as needed
– Dynamic reconfiguration, fine grained tuning of sampling
– Stateful packet inspection and sampling for network security

◊ Technical challenges: 
– High rate packet processing in software
– Transparent support from commodity hardware
– OpenSketch: [Yu, Jose, Miao, 2013]

◊ Same issues in other applications: use of commodity programmable HW
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Stream Sampling:
Sampling as Cost Optimization
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Matching Data to Sampling Analysis

◊ Generic problem 1: Counting objects: weight xi = 1
Bernoulli (uniform) sampling with probability p works fine

– Estimated subset count X’(S) = #{samples in S} / p
– Relative Variance (X’(S)) = (1/p -1)/X(S)

□ given p, get any desired accuracy for large enough S

◊ Generic problem 2: xi in Pareto distribution, a.k.a. 80-20 law
– Small proportion of objects possess a large proportion of total weight 

□ How to best to sample objects to accurately estimate weight?
– Uniform sampling?

□ likely to omit heavy objects   big hit on accuracy
□ making selection set S large doesn’t help

– Select m largest objects ?
□ biased & smaller objects systematically ignored
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Heavy Tails in the Internet and 
Beyond
◊ Files sizes in storage
◊ Bytes and packets per network flow
◊ Degree distributions in web graph, social networks
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Non-Uniform Sampling

◊ Extensive literature: see book by [Tille, “Sampling Algorithms”, 2006]
◊ Predates “Big Data”

– Focus on statistical properties, not so much computational
◊ IPPS: Inclusion Probability Proportional to Size

– Variance Optimal for HT Estimation

– Sampling probabilities for multivariate version: [Chao 1982, Tille 1996]
– Efficient stream sampling algorithm: [Cohen et. al. 2009]  
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Costs of Non-Uniform Sampling 

◊ Independent sampling from n objects with weights {x1,… ,xn}
◊ Goal: find the “best” sampling probabilities {p1, … ,pn}
◊ Horvitz-Thompson: unbiased estimation of each xi by 

◊ Two costs to balance:
1. Estimation Variance:   Var(x’i) = x2

i (1/pi  – 1)

2. Expected Sample Size:  ipi 

◊ Minimize Linear Combination Cost: i (xi
2(1/pi –1)  +  z2 pi)

–  z expresses relative importance of small sample vs. small variance

otherwise0
selected  i  weightif px

 
 

x' ii
i





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Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size
◊ Minimize Cost i (xi

2 (1/pi – 1)  + z2 pi) subject to 1 ≥ pi ≥ 0  
◊ Solution: pi = pz(xi) = min{1, xi /z}

– small objects (xi < z) selected with probability proportional to size
– large objects (xi ≥ z) selected with probability 1
– Call z the “sampling threshold”
– Unbiased estimator xi/pi =max{xi , z}

◊ Perhaps reminiscent of importance
sampling, but not the same:
– make no assumptions concerning

distribution of the x

pz(x) 

1

z
x
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Error Estimates and Bounds

◊ Variance Based:
– HT sampling variance for single object of weight xi

□ Var(x’i) = x2
i (1/pi  – 1) = x2

i (1/min{1,xi/z}  – 1) ≤ z xi

– Subset sum X(S)= iS xi
 is estimated by X’(S) = iS x’i

 

□ Var(X’(S)) ≤ z X(S)
◊ Exponential Bounds

– E.g. Prob[X’(S) = 0] ≤ exp(- X(S) / z )
◊ Bounds are simple and powerful

– depend only on subset sum X(S), not individual constituents
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Sampled IP Traffic Measurements

◊ Packet Sampled NetFlow
– Sample packet stream in router to limit rate of key lookup: uniform 1/N
– Aggregate sampled packets into flow records by key

◊ Model: packet stream of (key, bytesize) pairs { (bi, ki) }
◊ Packet sampled flow record (b,k) where b = Σ {bi : i sampled ∧ ki  =  k}

– HT estimate b/N of total bytes in flow
◊ Downstream sampling of flow records in measurement infrastructure

– IPPS sampling, probability min{1, b/(Nz)}
◊ Chained variance bound for any subset sum X of flows

– Var(X’) ≤ (z + Nbmax) X where bmax = maximum packet byte size
– Regardless of how packets are distributed amongst flows
[Duffield, Lund, Thorup, IEEE ToIT, 2004]
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Estimation Accuracy in Practice

◊ Estimate any subset sum comprising at least some fraction f of weight 
◊ Suppose: sample size m
◊ Analysis: typical estimation error ε (relative standard deviation) obeys

◊ 2*16 = same storage needed for aggregates over 16 bit address prefixes
□ But sampling gives more flexibility to estimate traffic within aggregates 

kf 
1ε 

Estimate  fraction f = 0.1% 
with typical relative error 

12%:

m
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Heavy Hitters: 
Exact vs. Aggregate vs. Sampled
◊ Sampling does not tell you where the interesting features are

– But does speed up the ability to find them with existing tools
◊ Example: Heavy Hitter Detection

– Setting: Flow records reporting 10GB/s traffic stream
– Aim: find Heavy Hitters = IP prefixes comprising ≥ 0.1% of  traffic
– Response time needed: 5 minute

◊ Compare:
– Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
– 64k aggregates over 16 bit prefixes: no deeper drill-down possible
– Sampled: 64k flow records: any aggregate ≥ 0.1%  accurate to 10%

Exact Aggregate Sampled
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Cost Optimization for Sampling

Several different approaches optimize for different objectives:
1. Fixed Sample Size IPPS Sample

– Variance Optimal sampling: minimal variance unbiased estimation
1. Structure Aware Sampling

– Improve estimation accuracy for subnet queries using topological cost
1. Fair Sampling

– Adaptively balance sampling budget over subpopulations of flows 
– Uniform estimation accuracy regardless of subpopulation size

1. Stable Sampling
– Increase stability of sample set by imposing cost on changes
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IPPS Stream Reservoir Sampling
◊ Each arriving item:

– Provisionally include item in reservoir
– If m+1 items, discard 1 item randomly

□ Calculate threshold z to sample m items on average: z solves i pz(xi) = m
□ Discard item i with probability qi =1 – pz(xi)
□ Adjust m surviving xi with Horvitz-Thompson x’i = xi / pi = max{xi,z}

◊ Efficient Implementation:
– Computational cost O(log m ) per item, amortized cost O(log log m)

[Cohen, Duffield, Lund, Kaplan, Thorup;  SODA 2009,  SIAM J. Comput. 2011]
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Structure (Un)Aware Sampling

◊ Sampling is oblivious to structure in keys (IP address hierarchy)
– Estimation disperses the weight of discarded items to surviving samples

◊ Queries structure aware: subset sums over related keys (IP subnets)
– Accuracy on LHS is decreased by discarding weight on RHS 


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Localizing Weight Redistribution

◊ Initial weight set {xi : iS} for some S  Ω 
– E.g. Ω = possible IP addresses, S =observed IP addresses 

◊ Attribute “range cost” C({xi : iR}) for each weight subset RS
– Possible factors for Range Cost: 

□ Sampling variance
□ Topology e.g. height of lowest common ancestor

– Heuristics: R* = Nearest Neighbor {xi , xj} of minimal xixj

◊ Sample k items from S:
– Progressively remove one item from  

subset with minimal range cost:
– While(|S| > k) 

□ Find R*S of minimal range cost.
□ Remove a weight from R* w/ VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]


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Order of magnitude reduction in 
average subnet error vs. VarOpt
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Fair Sampling Across Subpopulations

◊ Analysis queries often focus on specific subpopulations
– E.g. networking: different customers, user applications, network paths

◊ Wide variation in subpopulation size
– 5 orders of magnitude variation in traffic on interfaces of access router

◊ If uniform sampling across subpopulations:
– Poor estimation accuracy on subset sums within small subpopulations

Sample

Color = subpopulation

     ,      = interesting items

– occurrence proportional to subpopulation size

Uniform Sampling across subpopulations:

– Difficult to track proportion of interesting 
items within small subpopulations:
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Fair Sampling Across Subpopulations

◊ Minimize relative variance by sharing budget m over subpopulations
– Total n objects in subpopulations n1,…,nd with ini=n
– Allocate budget mi to each subpopulation ni with imi=m

◊ Minimize average population relative variance R = const. i1/mi

◊ Theorem:
– R minimized when {mi} are Max-Min Fair share of m under demands {ni}

◊ Streaming
– Problem: don’t know subpopulation sizes {ni} in advance

◊ Solution: progressive fair sharing as reservoir sample
– Provisionally include each arrival
– Discard 1 item as VarOpt sample from any maximal subpopulation

◊ Theorem [Duffield; Sigmetrics 2012]: 
– Max-Min Fair at all times; equality in distribution with VarOpt samples {mi from ni}



Sampling for Big Data

Stable Sampling

◊ Setting: Sampling a population over successive periods
◊ Sample independently at each time period?

– Cost associated with sample churn
– Time series analysis of set of relatively stable keys

◊ Find sampling probabilities through cost minimization
– Minimize Cost = Estimation Variance + z * E[#Churn]

◊ Size m sample with maximal expected churn D
– weights {xi}, previous sampling probabilities {pi}
– find new sampling probabilities {qi} to minimize cost of taking m samples
– Minimize ix2

i / qi subject to 1 ≥ qi ≥ 0, I qi = m and I | pi – qi | ≤  D 
[Cohen, Cormode, Duffield, Lund 13]
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Summary of Part 1

◊ Sampling as a powerful, general summarization technique
◊ Unbiased estimation via Horvitz-Thompson estimators
◊ Sampling from streams of data

– Uniform sampling: reservoir sampling
– Weighted generalizations: sample and hold, counting samples

◊ Advances in stream sampling
– The cost principle for sample design, and IPPS methods
– Threshold, priority and VarOpt sampling
– Extending the cost principle: 

□ structure aware, fair sampling, stable sampling, sketch guided
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Current Directions in Sampling
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Role and Challenges for Sampling

◊ Matching
– Sampling mediates between data characteristics and analysis needs
– Example: sample from power-law distribution of bytes per flow…

□ but also make accurate estimates from samples
□ simple uniform sampling misses the large flows

◊ Balance
– Weighted sampling across key-functions: e.g. customers, network paths, 

geolocations
□ cover small customers, not just large
□ cover all network elements, not just highly utilized

◊ Consistency
– Sample all views of same event, flow, customer, network element

□ across different datasets, at different times
□ independent sampling  small intersection of views
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Sampling and Big Data Systems

◊ Sampling is still a useful tool in cluster computing
– Reduce the latency of experimental analysis and algorithm design

◊ Sampling as an operator is easy to implement in MapReduce
– For uniform or weighted sampling of tuples

◊ Graph computations are a core motivator of big data
– PageRank as a canonical big computation
– Graph-specific systems emerging (Pregel, LFgraph, Graphlab, Giraph…)
– But… sampling primitives not yet prevalent in evolving graph systems

◊ When to do the sampling?
– Option 1: Sample as an initial step in the computation 

□ Fold sample into the initial “Map” step
– Option 2: Sample to create a stored sample graph before computation

□ Allows more complex sampling, e.g. random walk sampling
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Sampling + KDD

◊ The interplay between sampling and data mining is not well understood
– Need an understanding of how ML/DM algorithms are affected by sampling
– E.g. how big a sample is needed to build an accurate classifier?
– E.g. what sampling strategy optimizes cluster quality

◊ Expect results to be method specific
– I.e. “IPPS + k-means” rather than “sample + cluster”
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Sampling and Privacy

◊ Current focus on privacy-preserving data mining 
– Deliver promise of big data without sacrificing privacy?
– Opportunity for sampling to be part of the solution

◊ Naïve sampling provides “privacy in expectation”
– Your data remains private if you aren’t included in the sample…

◊ Intuition: uncertainty introduced by sampling contributes to privacy
– This intuition can be formalized with different privacy models

◊ Sampling can be analyzed in the context of differential privacy
– Sampling alone does not provide differential privacy
– But applying a DP method to sampled data does guarantee privacy
– A tradeoff between sampling rate and privacy parameters

□ Sometimes, lower sampling rate improves overall accuracy



Sampling for Big Data

Advert: Now Hiring…

◊ Nick Duffield, Texas A&M
– Phds in big data, graph sampling
– Nick.Duffield@gmail.com

◊ Graham Cormode, University of Warwick UK
– Phds in big data summarization 

(graphs and matrices, funded by MSR)
– Postdocs in privacy and data modeling 

(funded by EC, AT&T)
– G.Cormode@warwick.ac.uk
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That’s all!

Thank you!


